作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着人工智能技术的不断深化,学习各类数据中的规律将有效帮助人类扩大数据挖掘的范围,深度学习在其中扮演者重要的角色.类似于人类的学习能力,深度学习旨在利用计算机程序模拟出自学习系统,完成各种学习和识别任务,将此技术应用于人脸识别中,可以有效增加识别准确率和适应性.本文就深度学习的概况、原理进行了总结,并对基于深度学习的人脸识别技术进行了论述.
推荐文章
基于深度迁移学习的人脸识别方法研究
深度学习
人脸识别
迁移学习
不变性
区分性
基于深度学习的人脸识别算法研究
家庭服务机器人
人脸识别
深度学习
Inception-ResNet-V1
基于SLBP深度信念网络的人脸识别研究
显著局部二值模式
特征提取
深度信念网络
网络训练
深度学习
人脸识别
基于深度卷积稀疏自编码分层网络的人脸识别技术
人脸识别
特征提取
稀疏自编码
卷积神经网络
SVM分类器
深度网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的人脸识别技术研究
来源期刊 通讯世界 学科 工学
关键词 深度学习 人脸识别 特征提取 PCA算法
年,卷(期) 2019,(2) 所属期刊栏目 论述
研究方向 页码范围 299-300
页数 2页 分类号 TP391.41
字数 1770字 语种 中文
DOI 10.3969/j.issn.1006-4222.2019.02.192
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (58)
共引文献  (88)
参考文献  (4)
节点文献
引证文献  (4)
同被引文献  (20)
二级引证文献  (8)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(3)
  • 参考文献(0)
  • 二级参考文献(3)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(8)
  • 参考文献(0)
  • 二级参考文献(8)
2016(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(4)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(8)
  • 引证文献(0)
  • 二级引证文献(8)
研究主题发展历程
节点文献
深度学习
人脸识别
特征提取
PCA算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通讯世界
月刊
1006-4222
11-3850/TN
大16开
北京复兴路15号138室
82-551
1994
chi
出版文献量(篇)
31562
总下载数(次)
90
总被引数(次)
56487
论文1v1指导