基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以新和地区种植的大田哈密瓜为研究对象,采集不同物候期哈密瓜果实样本,采集高光谱数据并通过Savitzky-Golay一阶导数(SG-1)、Savitzky-Golay二阶导数(SG-2)、标准正态变换(SNV)、多元散射校正(MSC)4种光谱预处理方法进行预处理,建立广义回归神经网络(GRNN)和概率神经网络(PNN)2种哈密瓜物候期判别模型,以模型判别正确率为评价指标,结果显示,所建模型均能很好地识别哈密瓜果实物候期.将采集到的4个时期的哈密瓜果实样本光谱组合成10组具有输入变量的光谱样本,分别建立GRNN和PNN判别模型,以模型运行时间作为模型评价指标,得出以3个时期的哈密瓜样本光谱所建立的SG-1-GRNN和SNV-PNN模型为最优,运行时间为0.046 9 s,运行速率最多可提高57%.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于高光谱技术的哈密瓜果实物候期判别模型
来源期刊 江苏农业科学 学科 农学
关键词 高光谱成像技术 哈密瓜物候期 神经网络 判别方法
年,卷(期) 2019,(22) 所属期刊栏目 农业工程与信息技术
研究方向 页码范围 258-264
页数 7页 分类号 S652.101
字数 5069字 语种 中文
DOI 10.15889/j.issn.1002-1302.2019.22.061
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (81)
共引文献  (87)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(19)
  • 参考文献(2)
  • 二级参考文献(17)
2013(19)
  • 参考文献(2)
  • 二级参考文献(17)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱成像技术
哈密瓜物候期
神经网络
判别方法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江苏农业科学
半月刊
1002-1302
32-1214/S
大16开
南京市孝陵卫钟灵街50号
28-10
1973
chi
出版文献量(篇)
24128
总下载数(次)
53
总被引数(次)
109978
相关基金
国家科技支撑计划
英文译名:
官方网址:http://kjzc.jhgl.org/
项目类型:重大项目
学科类型:能源
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导