基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对建筑能耗数据成因复杂,及能耗数据样本不足,导致现有建筑能耗预测模型不精确等问题,结合迁移学习和强化学习中的Sarsa学习方法,提出一种基于降维式自主迁移强化学习的建筑能耗预测方法——STRL.该方法通过提取影响建筑物能耗的重要维度进行降维,采用欧式度量对满足迁移条件的原始建筑MDP状态进行迁移,结合Sarsa算法构建能耗奖赏函数,实现能耗预测.将所提出的STRL与VFT-HSA1以及FTRL2方法用于模拟建筑物能耗问题进行对比实验,实验结果表明,STRL具有较快的收敛速度以及较好的收敛精度.
推荐文章
初中数学强化学生自主学习的有效措施
初中数学
自主学习
积极价值
有效措施
自主机器人的强化学习研究进展
强化学习
Markov决策过程
自主机器人
机器智能
基于行 为
基于强化学习的股票预测系统的研究与设计
股票预测
BP神经网络
强化学习
RBP模型
强化学习研究综述
强化学习
多智能体
马尔可夫决策过程
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 降维式自主迁移强化学习建筑能耗预测
来源期刊 电脑知识与技术 学科 工学
关键词 迁移学习 强化学习 降维 建筑能耗预测
年,卷(期) 2019,(25) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 205-208
页数 4页 分类号 TP181
字数 4616字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄泽天 苏州科技大学电子与信息工程学院 3 0 0.0 0.0
2 杨正霞 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (32)
共引文献  (11)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
迁移学习
强化学习
降维
建筑能耗预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术
旬刊
1009-3044
34-1205/TP
大16开
安徽省合肥市
26-188
1994
chi
出版文献量(篇)
58241
总下载数(次)
228
总被引数(次)
132128
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导