作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决传统谱聚类算法在图像分割时计算量大、使用单一特征分割的局限性问题,设计一种融合谱聚类和多特征的图像分割算法.首先进行超像素分割以减少计算量,分别提取每个超像素的颜色特征和纹理特征,构建超像素相似度矩阵;然后采用特征加权方法线性融合颜色和纹理特征的超像素相似度矩阵;最后采用谱聚类算法进行聚类分割.在UCMerced_LandUse和Berkeley数据集上进行实验测试,并与现有方法进行比较.实验结果表明,大多数实验图像IOU指标均在90%以上,相比于传统方法有了显著提高.
推荐文章
融合均值漂移和加权谱聚类的彩色图像分割
均值漂移
加权谱聚类
彩色图像
图像分割
基于谱聚类的医学图像分割方法
谱聚类
ELM
医学图像
结合多特征赋权的谱聚类水下多目标分割技术
目标
图像分割
聚类
特征选择
熵权法
基于多尺度特征融合模型的遥感图像建筑物分割
遥感图像
建筑物分割
深度神经网络
膨胀卷积
多尺度特征融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合谱聚类和多特征的遥感图像分割
来源期刊 软件导刊 学科 工学
关键词 谱聚类 超像素 图像分割 特征提取
年,卷(期) 2020,(3) 所属期刊栏目 图形图像处理
研究方向 页码范围 248-251
页数 4页 分类号 TP317.4
字数 3260字 语种 中文
DOI 10.11907/rjdk.191657
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冒伟 上海理工大学光电信息与计算机工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (172)
共引文献  (205)
参考文献  (17)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(5)
  • 参考文献(0)
  • 二级参考文献(5)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(11)
  • 参考文献(1)
  • 二级参考文献(10)
2007(14)
  • 参考文献(0)
  • 二级参考文献(14)
2008(14)
  • 参考文献(0)
  • 二级参考文献(14)
2009(11)
  • 参考文献(0)
  • 二级参考文献(11)
2010(21)
  • 参考文献(2)
  • 二级参考文献(19)
2011(17)
  • 参考文献(0)
  • 二级参考文献(17)
2012(10)
  • 参考文献(4)
  • 二级参考文献(6)
2013(9)
  • 参考文献(2)
  • 二级参考文献(7)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
谱聚类
超像素
图像分割
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导