基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
公交行程时间的精确预测对于提升公交吸引力具有重要意义.本文基于公交车到离站的历史数据,综合考虑时间周期、站点、站间距离、天气等多个因素,建立了基于BP神经网络的公交车静态行程时间预测模型,以该模型为基础,采用动态迭代的方法,叠加多个站间行程时间预测结果,进一步构建了面向连续站点的公交车动态行程时间预测模型,实现对跨越多个站点的公交行程时间预测.以青岛市125路公交为例对算法进行测试.在模型的横向对比实验中,本模型预测结果的绝对误差均在50 s以内,平均绝对误差百分比(MAPE)为11.74%,均方根误差(RMSE)为23.15,R2的确定系数为0.905 1,SVM的MAPE、RMSE、R2误差指标分别为:12.38%、38.33、0.743 6,LR对应的误差指标分别为:12.50%、25.59、0.884 1;在静态模型与动态模型的对比实验中,动态模型预测结果的MAPE为11.75%,RMSE为23.15,静态模型对应误差指标分别为:11.63%、26.74.研究结果表明,基于BP神经网络的公交动态行程时间预测模型比传统的静态预测方法具有更高的预测精度.
推荐文章
基于BP神经网络的公交车到站时间预测
公交车到站时间
智能化
公交调研
非线性
数学模型
BP神经网络
基于 BP神经网络与SVM的快速路行程时间组合预测研究
快速路行程时间
车牌识别数据
BP神经网络
支持向量机
组合预测
基于改进BP神经网络的混沌时间序列预测方法对比
混沌时间序列
BP神经网络
遗传算法
粒子群算法
基于GPS的公交行程时间预测模型
公交车辆
GPS行程时间
预测模型
公交串行事件
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的公交动态行程时间预测方法研究
来源期刊 中国海洋大学学报(自然科学版) 学科 数学
关键词 公交行程时间 动态预测 BP神经网络 动态迭代
年,卷(期) 2020,(2) 所属期刊栏目 研究论文
研究方向 页码范围 142-154
页数 13页 分类号 O141.4
字数 5740字 语种 中文
DOI 10.16441/j.cnki.hdxb.20180285
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韩勇 中国海洋大学信息科学与工程学院 41 385 9.0 18.0
3 陈戈 中国海洋大学信息科学与工程学院 89 751 14.0 23.0
5 高鹏 2 1 1.0 1.0
10 周林 中国海洋大学信息科学与工程学院 1 0 0.0 0.0
11 王舒康 中国海洋大学信息科学与工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (27)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(2)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
公交行程时间
动态预测
BP神经网络
动态迭代
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国海洋大学学报(自然科学版)
月刊
1672-5174
37-1414/P
大16开
青岛市松岭路238号
24-31
1959
chi
出版文献量(篇)
4553
总下载数(次)
21
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导