基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
<div style="text-align:justify;"> <span style="font-family:Verdana;">Software Cost Estimation (SCE) is an essential requirement in producing software these days. Genuine accurate estimation requires cost-and-efforts factors in delivering software by utilizing algorithmic or Ensemble Learning Methods (ELMs). Effort is estimated in terms of individual months and length. Overestimation as well as underestimation of efforts can adversely affect software development. Hence, it is the responsibility of software development managers to estimate the cost using the best possible techniques. The predominant cost for any product is the expense of figuring effort. Subsequently, effort estimation is exceptionally pivotal and there is a constant need to improve its accuracy. Fortunately, several efforts estimation models are available;however, it is difficult to determine which model is more accurate on what dataset. Hence, we use ensemble learning bagging with base learner Linear regression, SMOReg, MLP, random forest, REPTree, and M5Rule. We also implemented the feature selection algorithm to examine the effect of feature selection algorithm BestFit and Genetic Algorithm. The dataset is based on 499 projects known as China. The results show that the Mean Magnitude Relative error of Bagging M5 rule with Genetic Algorithm as Feature Selection is 10%, which makes it better than other algorithms.</span> </div>
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Logical Effort理论在电路设计中的应用
Logical Effort
深亚微米
延迟
逻辑门
Best Effort 服务模式下的Internet流量控制
互联网
流量控制
无响应流
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Software Effort Prediction Using Ensemble Learning Methods
来源期刊 软件工程与应用(英文) 学科 工学
关键词 Software Cost Estimation (SCE) Ensemble Learning BAGGING Linear Regression SMOReg REPTree M5 Rule
年,卷(期) 2020,(7) 所属期刊栏目
研究方向 页码范围 143-160
页数 18页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Software
Cost
Estimation
(SCE)
Ensemble
Learning
BAGGING
Linear
Regression
SMOReg
REPTree
M5
Rule
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件工程与应用(英文)
月刊
1945-3116
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
885
总下载数(次)
0
总被引数(次)
0
论文1v1指导