针对传统人脸识别算法在带噪声环境下识别效率低下的问题,文中以FERET、CMU PIE FAC及ORL数据库的人脸图像为研究对象,提出一种基于快速PCA和简化PSO的人脸识别改进方法.通过对不同噪声环境下的人脸图像进行滤波消噪处理,并引入快速PCA算法对图像数据进行特征降维,然后利用简化PSO算法进行SVM的参数优化,构建最终的SVM分类模型,以实现人脸识别.结果表明:人脸图像受高斯或椒盐噪声污染会对识别效果产生一定的影响,利用滤波消噪处理可以从一定程度上抑制噪声干扰,与此同时,在数据降维过程中,采用快速PCA算法以计算低维度矩阵的本征值去替代高维度协方差矩阵的本征向量求解,在保证较高的图像解释程度的同时,运算速度明显加快,与传统的PCA、PSO算法结合SVM模型进行人脸识别效果相比,提出的改进算法在保证较高的人脸识别精度情况下,识别过程的计算量大大减少,具有一定的实用价值.