基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
离线笔迹鉴别在司法鉴定与历史文档分析中有重要作用.当前的主要离线笔迹鉴别都是基于局部特征提取的方法,其在笔迹检索中严重依赖于数据增强和全局编码,在笔迹识别中需要较多的笔迹信息.针对这一问题,本文提出一种基于统计的文档行分割与深度卷积神经网络相结合的离线笔迹鉴别方法(DLS-CNN).首先,使用基于统计的文档行分割方法将笔迹材料分割成小的像素块;然后,用优化后的残差神经网络作为识别模型;最后,对局部特征使用取均值法进行编码.在ICDAR2013和CVL这两个标准数据集上的实验结果表明,该方法能有效获得鲁棒的局部特征,从而仅需要少量的笔迹信息就能取得较高的识别率,而且不需依赖于数据增强和全局编码就能取得较好的检索效果.实验代码地址:https://github.com/shiming-chen/DLS-CNN.
推荐文章
一种基于纹理特征的笔迹鉴别方法
笔迹识别
纹理特征
特征选择
文字切割
Gabor滤波
基于特征融合的维吾尔文笔迹鉴别方法
笔迹鉴别
维吾尔文笔迹
尺度不变特征变换
局部窗口特征
旋转不变性
基于改进SIFT的离线签名鉴别方法
离线签名鉴别
尺度不变特征变换
尺度空间
匹配对筛选
ODH特征向量
一种基于基因证书的身份鉴别方法
网络安全
身份鉴别
基因证书
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种鲁棒的离线笔迹鉴别方法
来源期刊 自动化学报 学科
关键词 笔迹鉴别 笔迹检索 文档行分割 卷积神经网络 特征提取
年,卷(期) 2020,(1) 所属期刊栏目 论文与报告
研究方向 页码范围 108-116
页数 9页 分类号
字数 7489字 语种 中文
DOI 10.16383/j.aas.2018.c180441
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王以松 贵州大学计算机科学与技术学院 23 51 4.0 5.0
3 陈使明 贵州大学计算机科学与技术学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (2)
参考文献  (15)
节点文献
引证文献  (3)
同被引文献  (11)
二级引证文献  (0)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
笔迹鉴别
笔迹检索
文档行分割
卷积神经网络
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
总被引数(次)
120705
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导