钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
大学学报期刊
\
西南交通大学学报期刊
\
基于扩张卷积金字塔网络的车道线检测算法
基于扩张卷积金字塔网络的车道线检测算法
作者:
张剑锋
张裕天
田晟
许凯
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
深度学习
计算机视觉
车道线检测
摘要:
为满足汽车高级驾驶辅助系统对车道线检测准确性和时效性的要求,采用改进的ResNet50网络作为基础模型提取局部车道线特征,利用扩张卷积能指数级扩大感受野的特点,设计了扩张卷积金字塔模块,用以完整提取不同尺度的车道线特征,提出"锚点栅格"的思想,将输出划分为一组栅格,对每个栅格进行分类和回归分析,经过非极大值抑制等后处理,最终输出车道线标记点集.结果表明:在CULane多场景数据集里对模型进行测试,在交并比阈值取为0.3的评估条件下其综合评估指标F-measure达到78.6%,检测速率达到40帧/s,在评估指标相近的情况下具有远高于空间卷积神经网络(spatial convolutional neural networks,SCNN)模型的检测速率,并在眩光、弯道等困难场景中的检测效果优于SCNN.
暂无资源
收藏
引用
分享
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于多级金字塔卷积神经网络的快速特征表示方法
深度学习
多级金字塔卷积神经网络
特征表示
特征共享
基于金字塔特征的核相关滤波跟踪算法
视觉跟踪
核相关滤波跟踪
金字塔特征
HOG特征
基于金字塔模型的地形网格裂缝消除算法
金字塔模型
四叉树
裂缝消除
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于扩张卷积金字塔网络的车道线检测算法
来源期刊
西南交通大学学报
学科
工学
关键词
深度学习
计算机视觉
车道线检测
年,卷(期)
2020,(2)
所属期刊栏目
研究方向
页码范围
386-392,416
页数
8页
分类号
TN911.73
字数
4364字
语种
中文
DOI
10.3969/j.issn.0258-2724.20181026
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
田晟
华南理工大学土木与交通学院
56
175
7.0
9.0
2
许凯
华南理工大学土木与交通学院
11
12
2.0
3.0
3
张剑锋
华南理工大学土木与交通学院
3
5
2.0
2.0
4
张裕天
华南理工大学土木与交通学院
3
5
2.0
2.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(24)
共引文献
(12)
参考文献
(8)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1988(1)
参考文献(0)
二级参考文献(1)
2000(1)
参考文献(0)
二级参考文献(1)
2004(3)
参考文献(0)
二级参考文献(3)
2005(1)
参考文献(0)
二级参考文献(1)
2006(3)
参考文献(0)
二级参考文献(3)
2007(3)
参考文献(0)
二级参考文献(3)
2009(2)
参考文献(0)
二级参考文献(2)
2010(2)
参考文献(0)
二级参考文献(2)
2011(2)
参考文献(0)
二级参考文献(2)
2013(2)
参考文献(0)
二级参考文献(2)
2015(3)
参考文献(1)
二级参考文献(2)
2016(1)
参考文献(0)
二级参考文献(1)
2017(2)
参考文献(1)
二级参考文献(1)
2018(5)
参考文献(5)
二级参考文献(0)
2019(1)
参考文献(1)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
深度学习
计算机视觉
车道线检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西南交通大学学报
主办单位:
西南交通大学
出版周期:
双月刊
ISSN:
0258-2724
CN:
51-1277/U
开本:
大16开
出版地:
四川省成都市二环路北一段
邮发代号:
62-104
创刊时间:
1954
语种:
chi
出版文献量(篇)
3811
总下载数(次)
4
相关基金
国家留学基金
英文译名:
官方网址:
http://www.csc.edu.cn/gb/
项目类型:
学科类型:
期刊文献
相关文献
1.
基于卷积神经网络的乳腺疾病检测算法
2.
基于多级金字塔卷积神经网络的快速特征表示方法
3.
基于金字塔特征的核相关滤波跟踪算法
4.
基于金字塔模型的地形网格裂缝消除算法
5.
基于方向可控金字塔的图像融合算法
6.
尺度无关的级联卷积神经网络人脸检测算法
7.
基于DM6446的车道线快速检测算法
8.
基于线性双曲线模型的车道线检测算法
9.
一种基于中值金字塔的图像融合算法
10.
特征金字塔融合的多模态行人检测算法
11.
基于小波金字塔的快速图像匹配算法
12.
利用金字塔方法增强DR图像
13.
基于高斯金字塔的海量超大图像快速漫游算法
14.
基于金字塔算法的绝热层超声粘接图像的融合
15.
基于小波图像金字塔的工件目标检测与定位研究
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
西南交通大学学报2022
西南交通大学学报2021
西南交通大学学报2020
西南交通大学学报2019
西南交通大学学报2018
西南交通大学学报2017
西南交通大学学报2016
西南交通大学学报2015
西南交通大学学报2014
西南交通大学学报2013
西南交通大学学报2012
西南交通大学学报2011
西南交通大学学报2010
西南交通大学学报2009
西南交通大学学报2008
西南交通大学学报2007
西南交通大学学报2006
西南交通大学学报2005
西南交通大学学报2004
西南交通大学学报2003
西南交通大学学报2002
西南交通大学学报2001
西南交通大学学报2000
西南交通大学学报1999
西南交通大学学报2020年第6期
西南交通大学学报2020年第5期
西南交通大学学报2020年第4期
西南交通大学学报2020年第3期
西南交通大学学报2020年第2期
西南交通大学学报2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号