基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为满足汽车高级驾驶辅助系统对车道线检测准确性和时效性的要求,采用改进的ResNet50网络作为基础模型提取局部车道线特征,利用扩张卷积能指数级扩大感受野的特点,设计了扩张卷积金字塔模块,用以完整提取不同尺度的车道线特征,提出"锚点栅格"的思想,将输出划分为一组栅格,对每个栅格进行分类和回归分析,经过非极大值抑制等后处理,最终输出车道线标记点集.结果表明:在CULane多场景数据集里对模型进行测试,在交并比阈值取为0.3的评估条件下其综合评估指标F-measure达到78.6%,检测速率达到40帧/s,在评估指标相近的情况下具有远高于空间卷积神经网络(spatial convolutional neural networks,SCNN)模型的检测速率,并在眩光、弯道等困难场景中的检测效果优于SCNN.
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于多级金字塔卷积神经网络的快速特征表示方法
深度学习
多级金字塔卷积神经网络
特征表示
特征共享
基于金字塔特征的核相关滤波跟踪算法
视觉跟踪
核相关滤波跟踪
金字塔特征
HOG特征
基于金字塔模型的地形网格裂缝消除算法
金字塔模型
四叉树
裂缝消除
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于扩张卷积金字塔网络的车道线检测算法
来源期刊 西南交通大学学报 学科 工学
关键词 深度学习 计算机视觉 车道线检测
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 386-392,416
页数 8页 分类号 TN911.73
字数 4364字 语种 中文
DOI 10.3969/j.issn.0258-2724.20181026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田晟 华南理工大学土木与交通学院 56 175 7.0 9.0
2 许凯 华南理工大学土木与交通学院 11 12 2.0 3.0
3 张剑锋 华南理工大学土木与交通学院 3 5 2.0 2.0
4 张裕天 华南理工大学土木与交通学院 3 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (12)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
计算机视觉
车道线检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
西南交通大学学报
双月刊
0258-2724
51-1277/U
大16开
四川省成都市二环路北一段
62-104
1954
chi
出版文献量(篇)
3811
总下载数(次)
4
相关基金
国家留学基金
英文译名:
官方网址:http://www.csc.edu.cn/gb/
项目类型:
学科类型:
论文1v1指导