作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人脸识别作为人工智能信息化的分支,可以通过卷积神经网络自主学习,快速实现人脸识别,但准确率及训练效率上仍存在不足.本文在传统模型的基础上改进模型结构,采用双对称LeNet并行连接的网络结构,运用DCT-LBP联合处理的方法对输入图像进行预处理,在输出层Softmax回归分类中的特征和权重向量间加上一个类内余弦矫正,增强了泛化能力,提高了识别效率.
推荐文章
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
基于卷积神经网络的人脸性别识别
人脸性别识别
卷积神经网络
稀疏连接
权值共享
基于代价敏感卷积神经网络的人脸年龄识别方法
卷积神经网路
人脸年龄识别
误分类代价
代价敏感性
期望类最大原则
基于卷积神经网络的人脸识别在开放机房的应用
卷积神经网络
人脸识别
开放机房
特征提取
反向传播
数据传输
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的人脸识别算法
来源期刊 辽宁科技大学学报 学科 工学
关键词 卷积神经网络 双对称LeNet 人脸识别 Softmax回归分类
年,卷(期) 2020,(5) 所属期刊栏目 控制科学与工程
研究方向 页码范围 363-367,376
页数 6页 分类号 TP181
字数 语种 中文
DOI 10.13988/j.ustl.2020.05.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张颖 28 172 7.0 13.0
2 宋强 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (26)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(7)
  • 参考文献(0)
  • 二级参考文献(7)
2018(8)
  • 参考文献(1)
  • 二级参考文献(7)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
双对称LeNet
人脸识别
Softmax回归分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
辽宁科技大学学报
双月刊
1674-1048
21-1555/TF
大16开
辽宁省鞍山市高新技术产业开发区千山路185号
1979
chi
出版文献量(篇)
2893
总下载数(次)
6
总被引数(次)
9608
论文1v1指导