基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 目标语义特征提取效果直接影响图像语义分割的精度,传统的单尺度特征提取方法对目标的语义分割精度较低,为此,提出一种基于多尺度特征融合的工件目标语义分割方法,利用卷积神经网络提取目标的多尺度局部特征语义信息,并将不同尺度的语义信息进行像素融合,使神经网络充分捕获图像中的上下文信息,获得更好的特征表示,有效实现工件目标的语义分割.方法 使用常用的多类工件图像定义视觉任务,利用残差网络模块获得目标的单尺度语义特征图,再结合本文提出的多尺度特征提取方式获得不同尺度的局部特征语义信息,通过信息融合获得目标分割图.使用上述方法经多次迭代训练后得到与视觉任务相关的工件目标分割模型,并对训练权重与超参数进行保存.结果 将本文方法和传统的单尺度特征提取方法做定性和定量的测试实验,结果表明,获得的分割网络模型对测试集中的目标都具有较精确的分割能力,与单尺度特征提取方法相比,本文方法的平均交并比mIOU(mean intersection over union)指标在验证集上训练精度提高了4.52%,在测试集上分割精度提高了4.84%.当测试样本中包含的目标种类较少且目标边缘清晰时,本文方法能够得到更精准的分割结果.结论 本文提出的语义分割方法,通过多尺度特征融合的方式增强了神经网络模型对目标特征的提取能力,使训练得到的分割网络模型比传统的单尺度特征提取方式在测试集上具有更优秀的性能,从而验证了所提出方法的有效性.
推荐文章
多尺度特征融合的图像语义分割
语义分割
空洞空间金字塔池化
空洞卷积
基于增强多尺度特征解码器的图像语义分割
语义分割
轻量级网络模型
解码器
特征提取网络
多尺度特征
基于多尺度特征融合模型的遥感图像建筑物分割
遥感图像
建筑物分割
深度神经网络
膨胀卷积
多尺度特征融合
一种融合多级特征信息的图像语义分割方法
图像语义分割
卷积神经网络
空洞卷积
空间金字塔池化
多尺度特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多尺度特征融合工件目标语义分割
来源期刊 中国图象图形学报 学科 工学
关键词 残差网络 语义分割 多尺度特征 深度学习 视觉任务
年,卷(期) 2020,(3) 所属期刊栏目 图像分析和识别
研究方向 页码范围 476-485
页数 10页 分类号 TP391.7
字数 6547字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何自芬 昆明理工大学机电工程学院 33 122 6.0 10.0
2 张印辉 昆明理工大学机电工程学院 40 190 8.0 13.0
3 和超 昆明理工大学机电工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (20)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
残差网络
语义分割
多尺度特征
深度学习
视觉任务
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导