作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对英文等符号语言不能直接使用现有的神经网络机器翻译模型(NMT)的问题.在简述LSTM神经网络的基础上,采用分桶(bucketing)的方式将样本进行batch划分,在NMT模型中加入注意力机制提高了系统的性能,并分别利用双向LSTM神经网络和贪婪算法设计了基于上下文特征提取的编码器和输出算法的解码器.最后从语句还原程度和语义识别情况两个角度对英文的一元分词和HMM分词在NMT模型上的应用结果进行了对比,研究了英文的NMT模型适配方案.
推荐文章
基于神经网络的英文机辅翻译预调序模型研究
神经网络
统计机器翻译
预调序模型
长距离调序
基于弱化语法规则的英文机器翻译的优化研究
英文机器翻译
弱化语法规则
信息熵
特征识别
基于语义网络的英语机器翻译模型设计与改进
语义网络
机器翻译
模型设计
语义相似度
语料库
权重训练
基于预训练模型的机器翻译研究与设计
注意力机制
Transformer模型
位置编码
预训练模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络机器翻译模型的英文分词研究
来源期刊 计算机与数字工程 学科 工学
关键词 神经网络机器翻译模型 自动编码器 英文适配
年,卷(期) 2020,(1) 所属期刊栏目 算法与分析
研究方向 页码范围 13-18,50
页数 7页 分类号 TP391.1
字数 5104字 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.01.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈祖君 西安培华学院国际教育学院 8 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (102)
共引文献  (156)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(5)
  • 参考文献(0)
  • 二级参考文献(5)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(10)
  • 参考文献(0)
  • 二级参考文献(10)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(10)
  • 参考文献(2)
  • 二级参考文献(8)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(12)
  • 参考文献(3)
  • 二级参考文献(9)
2017(7)
  • 参考文献(6)
  • 二级参考文献(1)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络机器翻译模型
自动编码器
英文适配
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导