基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This study aimed to find a suitable model for forecasting the appropriate stock of vaccines to avoid shortage and over-supply. The Auto-Regressive Integrated Moving Average (ARIMA) and Multilayer Perceptron Neural Network (MLPNN) models were used for forecasting time series data. The monthly vaccination coverage was used to develop the models from January 2014 until December 2019. The dataset consists of 72 months of observation, the 60 months of data are used for model fitting from January 2014 to December 2019, and the remaining 12 months of data from January 2019 to December 2019 are used to test the accuracy of the forecast. The most suitable forecast model was selected based on the lowest Root Mean Square Error (RMSE) value and the Mean Absolute Error (MAE). The analytical result shows that the MLPNN model outperformed the ARIMA model in forecasting monthly demand for vaccines. The results will help policymakers improve the proper use of vaccination resources.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Banglad
Arsenic
Groundwater
Hydrogeochemistry
Multivariate statistics
Spatial distribution
基于Model-on-Demand的预测控制研究
非线性系统
局部建模
广义预测控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Statistical and Machine Learning Methods for Vaccine Demand Forecasting: A Comparative Analysis
来源期刊 电脑和通信(英文) 学科 经济
关键词 Vaccine Demand Forecasting ARIMA Machine Learning
年,卷(期) dnhtxyw_2020,(10) 所属期刊栏目
研究方向 页码范围 37-49
页数 13页 分类号 F42
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Vaccine
Demand
Forecasting
ARIMA
Machine
Learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
论文1v1指导