基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高卷积神经网络的识别性能,提出了一种基于多种卷积神经网络模型的特征融合方法.论文通过构建一个深度学习网络,将多种卷积神经网络模型如ResNet、InceptionV3和VGG19提取的特征进行融合,并将融合后的特征应用到人脸识别中,据此训练出特征融合网络模型的网络参数;最后利用计算求出的阈值来区分类别.实验结果表明,在人脸库LFW数据集上,论文算法的人脸识别率可达98%;与现有的单一卷积神经网络相比,论文算法识别率更高.
推荐文章
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
基于多层特征融合可调监督函数卷积神经网络的人脸性别识别
人脸性别识别
多层特征融合
卷积神经网络
深度学习
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
基于卷积神经网络的人脸性别识别
人脸性别识别
卷积神经网络
稀疏连接
权值共享
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络特征融合的人脸识别算法
来源期刊 计算机与数字工程 学科 工学
关键词 人脸识别 特征融合 深度学习 阈值计算
年,卷(期) 2020,(1) 所属期刊栏目 信息融合
研究方向 页码范围 88-92,105
页数 6页 分类号 TP391.41
字数 3335字 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.01.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张健 江苏科技大学计算机学院 112 484 12.0 16.0
2 王卫民 江苏科技大学计算机学院 21 71 4.0 8.0
3 唐洋 江苏科技大学计算机学院 3 1 1.0 1.0
4 张轶秋 江苏科技大学计算机学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (127)
共引文献  (79)
参考文献  (15)
节点文献
引证文献  (1)
同被引文献  (3)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(6)
  • 参考文献(0)
  • 二级参考文献(6)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(12)
  • 参考文献(0)
  • 二级参考文献(12)
2013(16)
  • 参考文献(1)
  • 二级参考文献(15)
2014(10)
  • 参考文献(1)
  • 二级参考文献(9)
2015(6)
  • 参考文献(1)
  • 二级参考文献(5)
2016(11)
  • 参考文献(0)
  • 二级参考文献(11)
2017(8)
  • 参考文献(6)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
特征融合
深度学习
阈值计算
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导