基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决人工鉴别真伪卷烟效率低、主观性强等问题,基于计算机视觉和机器学习建立了一种真伪卷烟包装鉴别模型.利用计算机视觉对卷烟包装进行图像处理和特征向量提取,分别以相似性度量模型、机器学习模型对特征向量进行分类并判定卷烟真伪.相似性度量模型采用曼哈顿距离模型进行分类,并对高斯双边滤波函数进行了参数优化;机器学习模型则以图像分块为基础,确定最优分块数量和面积.以"中华(软)""玉溪(软)""钻石(荷花)"3个卷烟品牌共603个真伪样品为对象,分别采用两种模型进行判定,结果表明:相似性度量模型在"玉溪(软)"样品测试集的准确率为96.17%;机器学习模型在"中华(软)""玉溪(软)""钻石(荷花)"3个样品测试集的准确率分别为98.99%、96.61%和100%.机器学习模型与相似性度量模型相比较,具有较好的迁移能力和鲁棒性,适用于卷烟真伪鉴别样品量大、品类多、图像复杂等情况.该方法可为提高真伪卷烟鉴别效率和准确率提供技术支持.
推荐文章
基于双计算机的仿人机器人的视觉跟踪系统
仿人机器人
视觉跟踪
RTlinux
基于计算机视觉的移动机器人导航
计算机视觉
移动机器人
路径识别
自主导航
计算机视觉在工业机器人上的应用
视觉
工业机器人
自动定位
机器学习在计算机免疫中的应用
复杂适应性系统
计算机免疫
单例学习
规则评价
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于计算机视觉和机器学习的真伪卷烟包装鉴别
来源期刊 烟草科技 学科 工学
关键词 卷烟包装 真伪鉴别 计算机视觉 机器学习 相似性 分类模型
年,卷(期) 2020,(5) 所属期刊栏目 仪器与设备
研究方向 页码范围 83-92
页数 10页 分类号 TS474
字数 6004字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (124)
共引文献  (23)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(9)
  • 参考文献(0)
  • 二级参考文献(9)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(12)
  • 参考文献(1)
  • 二级参考文献(11)
2016(11)
  • 参考文献(1)
  • 二级参考文献(10)
2017(10)
  • 参考文献(2)
  • 二级参考文献(8)
2018(3)
  • 参考文献(1)
  • 二级参考文献(2)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷烟包装
真伪鉴别
计算机视觉
机器学习
相似性
分类模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
烟草科技
月刊
1002-0861
41-1137/TS
大16开
郑州市高新技术产业开发区枫杨街2号
36-33
1957
chi
出版文献量(篇)
4374
总下载数(次)
11
总被引数(次)
45391
论文1v1指导