基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 图像的风格迁移是近年来机器视觉领域的研究热点之一.针对传统基于卷积神经网络(CNN)的图像风格迁移方法得到的结果图像存在风格纹理不均匀、噪声增强及迭代时间长等问题,本文在CNN框架下提出了一种基于相关对齐的总变分图像风格迁移新模型.方法 在详细地分析了传统风格迁移方法的基础上,新模型引入了基于相关对齐的风格纹理提取方法,通过最小化损失函数,使得风格信息更加均匀地分布在结果图像中.通过分析比较CNN分解图像后不同卷积层的重构结果,提出了新的卷积层选择策略,以有效地提高风格迁移模型的效率.新模型引入了经典的总变分正则,以有效地抑制风格迁移过程中产生的噪声,使结果图像具有更好的视觉效果.结果 仿真实验结果说明,相对于传统方法,本文方法得到的结果图像在风格纹理和内容信息上均有更好的表现,即在风格纹理更加均匀细腻的基础上较好地保留了内容图像的信息.另外,新模型可以有效地抑制风格迁移过程中产生的噪声,且具有更高的运行效率(新模型比传统模型迭代时间减少了约30%).结论 与传统方法相比,本文方法得到的结果图像在视觉效果方面有更好的表现,且其效率明显优于传统的风格迁移模型.
推荐文章
基于生成模型的图像风格迁移设计与实现
图像风格迁移
生成模型
生成网络
VGG网络
基于总变分的MPEG解码算法
MPEG压缩
压缩痕迹
总变分
原—对偶算法
基于总变分彩色图像恢复问题的有效算法
总变分
一阶原对偶算法
分块矩阵求逆
彩色图像恢复
基于深度学习的中国画风格迁移
深度学习
风格迁移
中国画
VGG19
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 相关对齐的总变分风格迁移新模型
来源期刊 中国图象图形学报 学科 工学
关键词 相关对齐 总变分 风格迁移 机器视觉 卷积神经网络
年,卷(期) 2020,(2) 所属期刊栏目 图像处理与编码
研究方向 页码范围 241-254
页数 14页 分类号 TN911.73
字数 8183字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢斌 江西理工大学信息工程学院 63 296 9.0 12.0
5 汪宁 江西理工大学信息工程学院 2 0 0.0 0.0
6 范有伟 江西理工大学信息工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (20)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
相关对齐
总变分
风格迁移
机器视觉
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导