基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
图像超分辨率技术一直是计算机视觉领域研究的热点,为提高图像重建速度与精度,提出了一种稀疏编码与神经网络相结合的图像超分辨率算法.首先利用前馈神经网络严格对应稀疏编码过程中的每个步骤,然后通过反向传播算法对稀疏编码的所有组成部分进行联合训练,得到最为精确的高分辨率图像.级联多个稀疏编码网络增加了算法的灵活性,并减少了伪影.
推荐文章
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
基于GEP多标记学习的图像超分辨率复原算法
超分辨率复原
基因表达式编程
支持向量机
样本学习
图像超分辨率复原技术的现状与展望
超分辨率
图像复原
图像融合
遥感图像超分辨率复原算法的仿真实现
遥感图像
超分辨率复原
分辨率提高
目标识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏编码的图像超分辨率复原
来源期刊 计算机与数字工程 学科 工学
关键词 稀疏编码 神经网络 图像复原 超分辨率
年,卷(期) 2020,(3) 所属期刊栏目 图像处理
研究方向 页码范围 663-666
页数 4页 分类号 TP391.41
字数 2724字 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.03.032
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李丽 山东科技大学计算机科学与工程学院 6 102 3.0 6.0
2 李旭健 山东科技大学计算机科学与工程学院 15 25 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (21)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(14)
  • 参考文献(0)
  • 二级参考文献(14)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
稀疏编码
神经网络
图像复原
超分辨率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
总被引数(次)
47579
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导