基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高异常检测算法在高维数据上的性能,提出了一种基于稀疏表征的孤立点检测(ODSR)方法.将实例表征为其他实例的稀疏线性组合,得到所有实例的近邻关系矩阵,并使用基于图谱理论的谱聚类方法识别异常点.该方法具有自动选择近邻的优势,能有效地得到近邻关系,并解决传统近邻算法中的k值选择困难问题.将ODSR与6种流行的异常检测算法在1 1个真实数据集上进行了综合实验比较,结果表明ODSR的复杂度及曲线下面积(AUC)值及稳定性更高.
推荐文章
一种基于稀疏编码的人脸特征点检测方法
人脸检测
人脸特征点检测
稀疏编码
人脸校准
基于稀疏编码字典学习的疵点检测
疵点检测
稀疏编码
K-SVD字典学习
基于协稀疏正则化的异常行为检测模型
正常特征
异常特征
分析向量
稀疏
协稀疏
基于SSIM稀疏自编码网络的异常事件检测
结构相似性
稀疏自编码
马氏距离
反向传播
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏表征的异常点检测方法
来源期刊 华中科技大学学报(自然科学版) 学科 工学
关键词 稀疏表示 异常点 最近邻 谱聚类 高维数据
年,卷(期) 2020,(7) 所属期刊栏目 电子与信息工程
研究方向 页码范围 20-25
页数 6页 分类号 TP391
字数 语种 中文
DOI 10.13245/j.hust.200704
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚明海 91 1088 17.0 30.0
2 徐晓丹 3 8 1.0 2.0
3 刘华文 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (18)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
稀疏表示
异常点
最近邻
谱聚类
高维数据
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
华中科技大学学报(自然科学版)
月刊
1671-4512
42-1658/N
大16开
武汉市珞喻路1037号
38-9
1973
chi
出版文献量(篇)
9146
总下载数(次)
26
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导