基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用超声图像获取胎儿的各项生物指标,对诊断胎儿发育过程中的异常有重要作用.当前主要依靠医生对超声图像的手动测量来确定这些指标.然而,医师手动测量不仅具有主观性,而且在重复作业下效率低下.针对以上问题,提出一种基于DenseASPP模型的超声图像分割改进算法,以辅助医生完成对胎儿各项生物指标的测量.在DenseASPP模型中,首先利用普通卷积预先提取原始图像的特征得到预特征图,再以扩张卷积及金字塔池化结构为基础将前层所有扩张卷积的输出特征图与预特征图拼接在一起传输到下一层扩张卷积以获得更大感受野的多尺度特征图,最终将所有特征合并后通过Attention机制获得相关联的特征,再利用sigmoid函数获取分割结果.分别使用胎儿的头臀径,头围,腹围三个部位的超声图像作为数据集对本文提出的DenseASPP方法进行了评估.实验结果表明,DenseASPP方法优于其他当前常见的分割方法,取得了更好的性能.
推荐文章
多分辨超声心动图像分割模型
水平集
超声心动图
数学形态学
多分辨率
基于模糊增强的医学超声图像分割
模糊集
增强
分割
Markov随机场
医学超声图像分割技术
医学超声
图像
分割
基于改进CV模型的图像分割算法
图像分割
改进型CV模型
曲线驱动力
L1范数能量泛函
分割效率
数据计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于DenseASPP模型的超声图像分割
来源期刊 四川大学学报(自然科学版) 学科 工学
关键词 超声图像 图像分割 深度学习 扩张卷积
年,卷(期) 2020,(4) 所属期刊栏目 电子信息科学
研究方向 页码范围 741-748
页数 8页 分类号 TP391
字数 语种 中文
DOI 10.3969/j.issn.0490-6756.2020.04.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗红 128 627 13.0 20.0
2 张波 160 1081 17.0 25.0
3 周激流 227 2494 25.0 39.0
4 王艳 88 892 15.0 28.0
5 李頔 3 2 1.0 1.0
6 马宗庆 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (19)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(11)
  • 参考文献(2)
  • 二级参考文献(9)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超声图像
图像分割
深度学习
扩张卷积
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导