基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对自然场景下由LED灯组合形成的数字具有易受光照、背景和成像扭曲等因素影响识别困难的特点,提出了一种LED-LeNet卷积网络识别算法.对自采集LED灯类字体数据集按数字进行分类,将图像ROI操作、分辨率调整至32×32和数据增强等预处理后,在LeNe-5网络架构上通过卷积核重构、使用Swish激活函并数引入Dropout正则化等方法改进网络.采用自然场景下采集的交通信号灯倒计时数字图像数据库TST对算法进行了验证,算法识别正确率可达99.52%,识别速度为1 ms.实验结果表明在调整网络结构与卷积核参数并通过改变训练策略后算法识别LED灯类字体具有明显优势.
推荐文章
基于深度卷积神经网络的数字调制方式识别
调制方式识别
深度学习
卷积神经网络
星座图
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于改进卷积神经网络的手写数字识别
手写数字识别
卷积神经网络
SVM分类器
基于卷积神经网络的手写体数字识别系统
卷积神经网络
手写体数字
Linux
QT
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的LED灯类字体数字识别
来源期刊 电子测量与仪器学报 学科
关键词 LED-LeNet 自然场景 卷积神经网络 数字识别
年,卷(期) 2020,(11) 所属期刊栏目 学术论文|PAPERS
研究方向 页码范围 148-154
页数 7页 分类号 TP391.41
字数 语种 中文
DOI 10.13382/j.jemi.B2003005
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (118)
共引文献  (294)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(17)
  • 参考文献(1)
  • 二级参考文献(16)
2015(24)
  • 参考文献(1)
  • 二级参考文献(23)
2016(20)
  • 参考文献(2)
  • 二级参考文献(18)
2017(11)
  • 参考文献(3)
  • 二级参考文献(8)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LED-LeNet
自然场景
卷积神经网络
数字识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导