目的:为了满足高蛋白质藜麦的选育、栽培和农业实践所需,实现藜麦籽粒粗蛋白含量快速、无损检测.方法:本研究应用近红外光谱技术对藜麦籽粒粗蛋白含量的快速检测进行系统研究,选用具有代表性的122份藜麦品种为试材,以其中94份为建模集,28份为验证集,扫描得到藜麦建模集的近红外原始光谱,用Unscrambler 10.4软件进行光谱预处理并使用偏最小二乘法(PLS)建立藜麦籽粒粗蛋白含量的定量预测模型.结果:经滤波拟合法(Savitzky-Golay,SG)+标准正态变量(Standard Normal Variate,SNV)预处理建立的模型预测值决定系数(R2)为0.9380,被测组分浓度分析误差(RMSE)为0.4823,表现最佳.用此模型对验证集28份样品进行预测,相关分析表明,预测值与国标法实测值决定系数为0.9416;单因素方差分析表明,国标法实测值和模型预测值之间无显著差异(P>0.05),建立的模型具有很高的准确性,预测效果良好.结论:近红外光谱法作为一种简单快速无损的检测手段,能够用于藜麦籽粒粗蛋白含量的检测,可以为优质藜麦育种、栽培和农业实践提供技术支持.