基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
设计一种语音情感数据挖掘分类识别方法.对语音情感信号进行预处理,进一步从语音话语中提取Mel频率倒谱系数(MFCC)和Mel能谱动态系数(MEDC);使用支持向量机(SVM)来分类不同的情绪状态,如愤怒、快乐、悲伤、中立、恐惧等,并基于径向基函数(RBF)内核进行训练阶段;应用柏林情感数据库和CASIA汉语情感语料库从情绪语音文件中提取特征.实验结果表明,柏林数据库和CASIA汉语情感语料库的正确识别率分别为82%和90.39%.与几种先进的对比方法进行比较,该方法在不同降维、不同信噪比下均取得了最优的识别精度.
推荐文章
基于Gabor特征提取和SVM交通标志识别方法研究
交通标志识别
图像灰度化
图像增强
Gabor特征提取
主成分分析
支持向量机
基于情感特征分类的语音情感识别研究
语音情感识别
情感特征分类
改进D-S证据理论
证据信任度信息熵
动态先验权重
数据融合
基于改进语音特征提取方法的语音识别
语音识别
特征提取
最大似然线性转换
Mel频率倒谱系数
隐马尔柯夫模型
基于多级SVM分类的语音情感识别算法
语音情感识别
支持向量机
多级分类
主成分分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于MFCC特征提取和改进SVM的语音情感数据挖掘分类识别方法研究
来源期刊 计算机应用与软件 学科 工学
关键词 语音情感识别 支持向量机 数据挖掘 Mel频率倒谱系数 Mel能谱动态系数
年,卷(期) 2020,(8) 所属期刊栏目 人工智能与识别
研究方向 页码范围 160-165,212
页数 7页 分类号 TP391
字数 5810字 语种 中文
DOI 10.3969/j.issn.1000-386x.2020.08.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋盛益 广东外语外贸大学信息学院 92 1053 18.0 28.0
2 张钰莎 湖南信息学院电子信息学院 11 9 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (64)
共引文献  (33)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1937(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(12)
  • 参考文献(1)
  • 二级参考文献(11)
2014(7)
  • 参考文献(2)
  • 二级参考文献(5)
2015(8)
  • 参考文献(4)
  • 二级参考文献(4)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语音情感识别
支持向量机
数据挖掘
Mel频率倒谱系数
Mel能谱动态系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导