作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的人脸识别技术对人脸图像特征的提取及分类器选择均较为复杂,且识别率也不高,随着卷积神经网络从手写数字识别到人脸识别的技术不断成熟,提出了一种利用Python+Keras框架测试CNN的人脸识别算法.该方法主要涉及两方面,一是通过改变隐藏层神经元数量查看对网络的影响;另一个是通过改变卷积层1和卷积层2特征图数量查看对网络的影响.通过多组实验测试得到最佳的CNN模型为36-76-1024,该模型可以自动提取人脸图像特征并分类,使用adam优化器和softmax分类器进行人脸识别可以让训练更快收敛和更有效提高准确率,并利用Dropout方法避免过拟合.实验结果表明,CNN模型在olivettifaces人脸库上的识别率达到了97.5%,当采用最佳CNN模型时平均识别率接近100%,从而验证了该算法及模型的有效性及准确性.
推荐文章
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
基于卷积神经网络的人脸性别识别
人脸性别识别
卷积神经网络
稀疏连接
权值共享
基于代价敏感卷积神经网络的人脸年龄识别方法
卷积神经网路
人脸年龄识别
误分类代价
代价敏感性
期望类最大原则
基于卷积神经网络的人脸识别在开放机房的应用
卷积神经网络
人脸识别
开放机房
特征提取
反向传播
数据传输
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的人脸识别算法
来源期刊 计算机与数字工程 学科 工学
关键词 人脸识别 卷积神经网络 CNN模型 softmax分类器
年,卷(期) 2020,(10) 所属期刊栏目 图像处理
研究方向 页码范围 2475-2479
页数 5页 分类号 TP391.4
字数 语种 中文
DOI 10.3969/j.issn.1672-9722.2020.10.033
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (84)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(4)
  • 参考文献(0)
  • 二级参考文献(4)
1993(3)
  • 参考文献(1)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(5)
  • 参考文献(1)
  • 二级参考文献(4)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(8)
  • 参考文献(0)
  • 二级参考文献(8)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(10)
  • 参考文献(2)
  • 二级参考文献(8)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(6)
  • 参考文献(3)
  • 二级参考文献(3)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸识别
卷积神经网络
CNN模型
softmax分类器
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与数字工程
月刊
1672-9722
42-1372/TP
大16开
武汉市东湖新技术开发区凤凰产业园藏龙北路1号
1973
chi
出版文献量(篇)
9945
总下载数(次)
28
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导