基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
RNAs play crucial and versatile roles in biological processes. Computational prediction approaches can help to understand RNA structures and their stabilizing factors, thus providing information on their functions, and facilitating the design of new RNAs. Machine learning (ML) techniques have made tremendous progress in many fields in the past few years. Although their usage in protein-related fields has a long history, the use of ML methods in predicting RNA tertiary structures is new and rare. Here, we review the recent advances of using ML methods on RNA structure predictions and discuss the advantages and limitation, the difficulties and potentials of these approaches when applied in the field.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
泛RNA:miRNA是RNA的“泛素”
小RNA
小分子RNA
泛RNA
泛素
泛素样蛋白
蛋白酶体
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Computational prediction of RNA tertiary structures using machine learning methods?
来源期刊 中国物理B(英文版) 学科
关键词
年,卷(期) 2020,(10) 所属期刊栏目 TOPICAL REVIEW — Modeling and simulations for the structures and functions of proteins and nucleic acids
研究方向 页码范围 19-26
页数 8页 分类号
字数 语种 英文
DOI 10.1088/1674-1056/abb303
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
中国物理B(英文版)
月刊
1674-1056
11-5639/O4
北京市中关村中国科学院物理研究所内
eng
出版文献量(篇)
17050
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导