基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
最小二乘支持向量机预测时,其参数的选取大部分只依赖于人工经验,无法实现自适应寻优,阻碍了其学习与泛化能力.针对该问题,采用灰狼优化算法对最小二乘支持向量机参数寻优,以1978—2016全国红枣产量数据为研究对象,利用最小二乘支持向量机的最优参数对红枣产量数据进行拟合与预测.为避免过拟合现象,将1978—2007和2013—2016年数据分别作为模型的训练与预测数据,2008-2012年数据用于交叉验证,同时为检验该模型的预测性能,将其与ARIMA模型的预测效果进行对比分析.实证分析表明,基于灰狼优化算法的最小二乘支持向量机模型预测的平均相对误差小于ARIMA模型预测的平均相对误差,其可适用于红枣产量的预测,也进一步表明灰狼优化算法对最小二乘支持向量机参数优化的有效性.
推荐文章
最小二乘支持向量机的参数优化算法研究
最小二乘支持向量机
参数优化
水下焊接
熔深预测
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
基于最小二乘支持向量机的复杂装备故障预测模型研究
故障预测模型
回归算法
最小二乘支持向量机
基于最小二乘支持向量机的耕地面积预测研究
最小二乘支持向量机
粒子群算法
耕地面积
影响因子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于灰狼优化算法的最小二乘支持向量机红枣产量预测研究
来源期刊 安徽农业科学 学科 农学
关键词 最小二乘支持向量机 全国红枣产量 灰狼优化算法 ARIMA
年,卷(期) 2020,(6) 所属期刊栏目 农业经济·农业信息
研究方向 页码范围 218-222
页数 5页 分类号 S126
字数 4219字 语种 中文
DOI 10.3969/j.issn.0517-6611.2020.06.059
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毋建宏 西安邮电大学经济与管理学院 12 126 6.0 11.0
2 李鹏飞 西安邮电大学经济与管理学院 33 216 8.0 14.0
3 王青青 西安邮电大学现代邮政学院 3 1 1.0 1.0
4 樊怡彤 西安邮电大学经济与管理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (184)
共引文献  (57)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(10)
  • 参考文献(0)
  • 二级参考文献(10)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(10)
  • 参考文献(0)
  • 二级参考文献(10)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(11)
  • 参考文献(0)
  • 二级参考文献(11)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(12)
  • 参考文献(0)
  • 二级参考文献(12)
2014(19)
  • 参考文献(1)
  • 二级参考文献(18)
2015(22)
  • 参考文献(1)
  • 二级参考文献(21)
2016(21)
  • 参考文献(0)
  • 二级参考文献(21)
2017(19)
  • 参考文献(5)
  • 二级参考文献(14)
2018(8)
  • 参考文献(5)
  • 二级参考文献(3)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
最小二乘支持向量机
全国红枣产量
灰狼优化算法
ARIMA
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
安徽农业科学
半月刊
0517-6611
34-1076/S
大16开
安徽省合肥市农科南路40号
26-20
1961
chi
出版文献量(篇)
78281
总下载数(次)
236
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导