基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Outside the explosive successful applications of deep learning(DL)in natural language processing,computer vision,and information retrieval,there have been numerous Deep Neural Networks(DNNs)based alternatives for common security-related scenarios with malware detection among more popular.Recently,adversarial learning has gained much focus.However,unlike computer vision applications,malware adversarial attack is expected to guarantee malwares'original maliciousness semantics.This paper proposes a novel adversarial instruction learning technique,DeepMal,based on an adversarial instruction learning approach for static malware detection.So far as we know,DeepMal is the first practical and systematical adversarial learning method,which could directly produce adversarial samples and effectively bypass static malware detectors powered by DL and machine learning(ML)models while preserving attack functionality in the real world.Moreover,our method conducts small-scale attacks,which could evade typical malware variants analysis(e.g.,duplication check).We evaluate DeepMal on two real-world datasets,six typical DL models,and three typical ML models.Experimental results demonstrate that,on both datasets,DeepMal can attack typical malware detectors with the mean F1-score and F1-score decreasing maximal 93.94%and 82.86%respectively.Besides,three typical types of malware samples(Trojan horses,Backdoors,Ransomware)proveto preserve original attack functionality,and the mean duplication check ratio of malware adversarial samples is below 2.0%.Besides,DeepMal can evade dynamic detectors and be easily enhanced by learning more dynamic features with specific constraints.
推荐文章
基于Object Detection API的物流单元货架目标检测
深度学习
物流单元货架
目标检测
Faster R-CNN算法
SSD-MobileNet算法
基于情感计算的E-Learning模型框架
情感计算
E-Learning
和谐人机环境
Blended Learning在教师教育中的应用探析
Blended Learning
教师教育
校本培训
反思
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 DeepMal:maliciousness-Preserving adversarial instruction learning against static malware detection
来源期刊 网络空间安全科学与技术(英文版) 学科
关键词
年,卷(期) 2021,(2) 所属期刊栏目
研究方向 页码范围 126-139
页数 14页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(4)
  • 参考文献(4)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
网络空间安全科学与技术(英文版)
季刊
2096-4862
10-1537/T
eng
出版文献量(篇)
54
总下载数(次)
0
总被引数(次)
0
论文1v1指导