作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
视网膜血管的分割帮助医生对眼底疾病进行诊断有着重要的意义.但现有方法对视网膜血管的分割存在着各种问题,例如对血管分割不足,抗噪声干扰能力弱,对病灶敏感等.针对现有血管分割方法的缺陷,本文提出使用条件深度卷积生成对抗网络的方法对视网膜血管进行分割.我们主要对生成器的网络结构进行了改进,在卷积层引入残差模块进行差值学习使得网络结构对输出的改变变得敏感,从而更好地对生成器的权重进行调整.为了降低参数数目和计算,在使用大卷积核之前使用小卷积核对输入特征图的通道数进行减半处理.通过使用U型网络的思想将卷积层的输出与反卷积层的输出进行连接从而避免低级信息共享.通过在DRIVE和STARE数据集上对本文的方法进行了验证,其分割准确率分别为96.08%、97.71%,灵敏性分别达到了82.74%、85.34%,F度量分别达到了82.08%和85.02%,灵敏度比R2U-Net的灵敏度分别高了4.82%,2.4%.
推荐文章
基于条件梯度Wasserstein生成对抗网络的图像识别
生成式对抗网络
条件模型
Wesserstein距离
梯度惩罚
全局和局部一致性
图像识别
基于条件的边界平衡生成对抗网络
生成对抗网络
条件特征
边界平衡
图像生成
一种浅层非对称结构的视网膜血管分割网络
视网膜血管分割
非对称结构
残差注意力模块
多尺度空洞卷积
基于条件深度卷积生成对抗网络的图像识别方法
生成对抗网络
卷积神经网络
条件模型
特征提取
图像识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基干条件深度卷积生成对抗网络的视网膜血管分割
来源期刊 自动化学报 学科
关键词 生成对抗网络 残差网络 视网膜血管分割 条件模型 卷积神经网络
年,卷(期) 2021,(1) 所属期刊栏目 论文与报告
研究方向 页码范围 136-147
页数 12页 分类号
字数 语种 中文
DOI 10.16383/j.aas.c180285
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (132)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(6)
  • 参考文献(2)
  • 二级参考文献(4)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
生成对抗网络
残差网络
视网膜血管分割
条件模型
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自动化学报
月刊
0254-4156
11-2109/TP
大16开
北京市海淀区中关村东路95号(北京2728信箱)
2-180
1963
chi
出版文献量(篇)
4124
总下载数(次)
26
论文1v1指导