基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 3D点云与以规则的密集网格表示的图像不同,不仅不规则且无序,而且由于输入输出大小和顺序差异,具有密度不均匀以及形状和缩放比例存在差异的特性.为此,提出一种对3D点云进行卷积的方法,将关系形状卷积神经网络(relation-shape convolution neural network,RSCNN)与逆密度函数相结合,并在卷积网络中增添反卷积层,实现了点云更精确的分类分割效果.方法 在关系形状卷积神经网络中,将卷积核视为由权重函数和逆密度函数组成的3D点局部坐标的非线性函数.对给定的点,权重函数通过多层感知器网络学习,逆密度函数通过核密度估计(kernel density estimation,KDE)学习,逆密度函数的引入对点云采样率不均匀的情况进行弥补.在点云分割任务中,引入由插值和关系形状卷积层两部分组成的反卷积层,将特征从子采样点云传播回原始分辨率.结果 在ModelNet40、ShapeNet、ScanNet数据集上进行分类、部分分割和语义场景分割实验,验证模型的分类分割性能.在分类实验中,与PointNet++相比,整体精度提升3.1%,在PointNet++将法线也作为输入的情况下,精度依然提升了1.9%;在部分分割实验中,类平均交并比(mean intersection over union,mIoU)比PointNet++在法线作为输入情况下高6.0%,实例mIoU比PointNet++高1.4%;在语义场景分割实验中,mIoU比PointNet++高13.7%.在ScanNet数据集上进行不同步长有无逆密度函数的对比实验,实验证明逆密度函数将分割精度提升0.8%左右,有效提升了模型性能.结论 融合逆密度函数的关系形状卷积神经网络可以有效获取点云数据中的局部和全局特征,并对点云采样不均匀的情况实现一定程度的补偿,实现更优的分类和分割效果.
推荐文章
基于多层特征融合可调监督函数卷积神经网络的人脸性别识别
人脸性别识别
多层特征融合
卷积神经网络
深度学习
结合高斯核函数的卷积 神经网络跟踪算法
视觉跟踪
卷积神经网络
高斯核函数
粒子滤波
基于FPGA的卷积神经网络浮点激励函数实现
卷积神经网络
激励函数
FPGA
多项式逼近
基于卷积神经网络多层特征融合的目标跟踪
目标跟踪
特征融合
特征表达
目标定位
卷积神经网络
回归模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合逆密度函数与关系形状卷积神经网络的点云分析
来源期刊 中国图象图形学报 学科
关键词 关系形状卷积神经网络(RSCNN) 逆密度函数 非均匀采样 反卷积层 点云的分类与分割
年,卷(期) 2021,(4) 所属期刊栏目 图像分析和识别|Image Analysis and Recognition
研究方向 页码范围 898-909
页数 12页 分类号 TP391
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (105)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1959(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
关系形状卷积神经网络(RSCNN)
逆密度函数
非均匀采样
反卷积层
点云的分类与分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导