基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
近年来,随着神经网络模型越来越复杂,针对卷积神经网络推理计算所需内存空间过大,限制其在嵌入式设备上部署的问题,提出一种动态多精度定点数据量化硬件结构,使用定点数代替训练后推理过程中的浮点数执行卷积运算.结果表明,采用16位动态定点量化和并行卷积运算硬件架构,与静态量化策略相比,数据准确率高达97.96%,硬件单元的面积仅为13740门,且内存占用量和带宽需求减半.相比Cortex M4使用浮点数据做卷积运算,该硬件加速单元性能提升了90%以上.
推荐文章
基于FPGA的卷积神经网络硬件加速器设计空间探索研究
卷积神经网络硬件加速器
设计空间探索
细粒度流水线
基于FPGA的卷积神经网络加速器设计与实现
卷积神经网络
现场可编程门阵列
加速器
有限资源
面向云端FPGA的卷积神经网络加速器的设计及其调度
卷积神经网络
现场可编程门阵列
高层次综合
加速器
调度
稀疏卷积神经网络加速器设计
稀疏卷积神经网络
阵列运算
加速器
高能效比
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向嵌入式的卷积神经网络硬件加速器设计
来源期刊 计算机工程与应用 学科 工学
关键词 卷积神经网络 嵌入式设备 动态多精度定点数据量化 并行卷积运算硬件架构
年,卷(期) 2021,(4) 所属期刊栏目 工程与应用
研究方向 页码范围 252-257
页数 6页 分类号 TP302
字数 语种 中文
DOI 10.3778/j.issn.1002-8331.1912-0099
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (60)
共引文献  (32)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(11)
  • 参考文献(0)
  • 二级参考文献(11)
2018(20)
  • 参考文献(5)
  • 二级参考文献(15)
2019(10)
  • 参考文献(6)
  • 二级参考文献(4)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
嵌入式设备
动态多精度定点数据量化
并行卷积运算硬件架构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导