基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在医学上,人上皮2型(HEp-2)细胞的间接免疫荧光检测在自身免疫性疾病的诊断中起着决定性的作用,而自身免疫性疾病的诊断,往往受到人力物力的限制.鉴于神经网络在图像分类任务中的优异性能,提出了一种基于聚类算法的粗-细两阶段卷积神经网络算法(CTFTCNN),并应用到HEp-2细胞分类中.在所提出的方法中,有两种类型的分类任务:粗粒度分类和细粒度分类.粗粒度分类是指,采用聚类算法从原始数据集中生成一个粗粒度数据集,用多尺度卷积神经网络(MSCNN)去处理该粗粒度数据集.然后在一定条件下进行细粒度分类.在细粒度分类时,仅对在粗粒度分类中至少包含了两个细类的粗类进行处理,且采用VGG16网络对每个这样的粗类进行细分.最后集成粗粒度网络和细粒度网络的结果.具体地,对于至少包含了两个细类的粗类,将粗粒度和细粒度网络中提取的特征融合起来决定最终的预测结果.在真实数据集上进行实验以评估所提出的模型.实验结果表明:与目前最先进的方法相比,该模型具有良好的应用前景.
推荐文章
基于稀疏卷积神经网络的考生识别算法
考生识别
卷积神经网络
人脸识别
身份验证
多通道输入
方法比
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粗-细两阶段卷积神经网络算法
来源期刊 计算机科学与探索 学科
关键词 图像分类 人上皮2型(HEp-2)细胞 卷积神经网络(CNN) 粗到细策略
年,卷(期) 2021,(8) 所属期刊栏目 人工智能|Artificial Intelligence
研究方向 页码范围 1501-1510
页数 10页 分类号 TP183
字数 语种 中文
DOI 10.3778/j.issn.1673-9418.2006085
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (11)
参考文献  (22)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1957(1)
  • 参考文献(0)
  • 二级参考文献(1)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(12)
  • 参考文献(5)
  • 二级参考文献(7)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(6)
  • 参考文献(3)
  • 二级参考文献(3)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像分类
人上皮2型(HEp-2)细胞
卷积神经网络(CNN)
粗到细策略
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学与探索
月刊
1673-9418
11-5602/TP
大16开
北京市海淀区北四环中路211号北京619信箱26分箱
82-560
2007
chi
出版文献量(篇)
2215
总下载数(次)
4
总被引数(次)
10748
论文1v1指导