基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
互联网是广告推广的重要媒介,但是低质、诈骗、违法等违规广告也大量充斥其中,严重污染网络空间,因此,实现恶意广告的有效甄别对构建安全清朗的网络环境意义重大.针对各类违法违规中文广告内容的识别需求,利用Bert(bidi-rectional encoder representation from transformers)和Word2vec分别提取文本字粒度和词粒度嵌入特征,使用CNN(convolutional neural networks)网络对Bert高层特征做深层抽取,同时将词粒度特征向量输入到双向LSTM(long short-term memory)网络提取全局语义,并采用Attention机制对语义特征强化,将强化特征和Bert字粒度特征进行融合,充分利用动态词向量和静态词向量的语义表征优势,提出一种基于强化语义的中文广告识别模型CARES(Chinese advertisement text recognition based on enhanced semantic).在真实的社交聊天文本数据集上的实验表明,与使用卷积神经网络、循环神经网络等文本分类模型相比,CARES模型分类性能最优,能更加精确识别社交聊天文本中的广告内容,模型识别的正确率达到97.73%.
推荐文章
基于语义列表的中文文本聚类算法
文本聚类
文本表示
语义列表
相似度计算
聚簇表示
基于语义特征的文本情感倾向识别研究
语义特征
倾向识别
情感分类
主题分类
基于潜在语义索引的中文文本聚类的研究
文本聚类
潜在语义索引
向量空间模型
信息检索
中文短文本语法语义相似度算法
语法语义相似度
语句相似性计算
HowNet
语料库
语法分析
语义分析
相似度计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于强化语义的中文广告文本识别技术研究
来源期刊 计算机技术与发展 学科
关键词 广告文本分类 语义强化 特征融合 预训练 注意力机制
年,卷(期) 2021,(3) 所属期刊栏目 大数据分析与挖掘
研究方向 页码范围 65-69,110
页数 6页 分类号 TP391.1
字数 语种 中文
DOI 10.3969/j.issn.1673-629X.2021.03.011
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
广告文本分类
语义强化
特征融合
预训练
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导