基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目标跟踪问题中目标所在环境的变化对跟踪效果有较大影响.鉴于此,提出一种基于弹性网结构的稀疏表示模型,井在粒子滤波框架下设计一种应用稀疏表示模型的抗干扰动态弹性网目标跟踪算法.同时,设计一种根据环境变化程度动态更新稀疏表示模型参数的方法,以克服光照变化等干扰对算法跟踪质量的影响.此外,所提出算法通过使用各向异性核函数计算各候选区域为跟踪目标所在位置的概率,能够提高跟踪算法的准确性,井改进字典模板更新方法,确保模板更新的准确性与及时性,保证跟踪质量.经实验验证,所提出的动态弹性网跟踪算法与其他跟踪算法相比,在光照等扰动下具有更好的跟踪效果,在遮挡及快速运动等情况下也能够有效保证跟踪精度.
推荐文章
基于HTP稀疏表示的鲁棒目标追踪方法
目标追踪
稀疏表示
硬阈值追踪
计算量
基于深度特征的稀疏表示目标跟踪算法
目标跟踪
稀疏表示
卷积神经网络
生成模型
深度学习
样本分块稀疏表示判决式目标跟踪
粒子滤波
样本分块
稀疏表示
分类器
一种鲁棒稀疏表示的单样本人脸识别算法
稀疏表示
单样本
人脸识别
位置图像
L2,1范数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 具有动态弹性稀疏表示的鲁棒目标跟踪算法
来源期刊 控制与决策 学科
关键词 目标跟踪 稀疏表示 粒子滤波 动态弹性网 核函数 字典更新
年,卷(期) 2021,(11) 所属期刊栏目 论文与报告|Papers and Reports
研究方向 页码范围 2674-2682
页数 9页 分类号 TP391
字数 语种 中文
DOI 10.13195/j.kzyjc.2020.0865
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (2)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(8)
  • 参考文献(2)
  • 二级参考文献(6)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标跟踪
稀疏表示
粒子滤波
动态弹性网
核函数
字典更新
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
控制与决策
月刊
1001-0920
21-1124/TP
大16开
沈阳东北大学125信箱
1986
chi
出版文献量(篇)
7031
总下载数(次)
20
总被引数(次)
141238
论文1v1指导