基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
准确的自车和前车状态估计是智能汽车有效决策和控制的前提,而以往的研究通常不考虑噪声统计特性不确定的问题,导致某些情况下车辆状态估计的误差很大.为此,提出一种鲁棒自适应平方根容积卡尔曼滤波(Robust adaptive square-root cubature Kalman filter,RASCKF)算法,以降低噪声统计不确定性对估计精度的影响.首先,采用最大后验概率准则估计了过程噪声协方差和测量噪声协方差的统计值,以提高噪声稳定时状态估计的精确性.然后,基于标准化测量新息序列设计了故障检测规则,利用实时测量新息对噪声协方差进行校正处理,保证状态估计算法的鲁棒性.最后,在不同的噪声干扰工况下对RASCKF算法进行了仿真验证.结果表明,RASCKF算法在估计精度和稳定性上明显优于标准SCKF算法,有效地解决了智能汽车目标状态跟踪过程中噪声统计特性不确定的问题.
推荐文章
尺度自适应在线鲁棒目标跟踪
在线boosting
半监督学习
尺度自适应
权重图像
目标跟踪
基于动态神经网络的鲁棒自适应跟踪
动态神经网络
仿射非线性系统
鲁棒自适应跟踪
基于IMM-SCKF-STF的机动目标跟踪算法
机动目标跟踪
非线性滤波
交互式多模型
强跟踪平方根容积卡尔曼滤波
基于状态观测器的非仿射非线性系统鲁棒自适应H∞跟踪控制
H∞跟踪控制
非仿射非线性系统
高增益观测器
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于鲁棒自适应SCKF的智能汽车目标状态跟踪研究
来源期刊 机械工程学报 学科 交通运输
关键词 智能汽车 目标状态跟踪 平方根容积卡尔曼滤波 鲁棒自适应
年,卷(期) 2021,(20) 所属期刊栏目 运载工程
研究方向 页码范围 181-193
页数 13页 分类号 U461
字数 语种 中文
DOI 10.3901/JME.2021.20.181
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能汽车
目标状态跟踪
平方根容积卡尔曼滤波
鲁棒自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械工程学报
半月刊
0577-6686
11-2187/TH
大16开
北京百万庄大街22号
2-362
1953
chi
出版文献量(篇)
12176
总下载数(次)
57
总被引数(次)
241354
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导