基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对短时交通流的预测精度问题,该文用PSO算法优化RBFNN模型的基础上,引入学习因子优化策略对PSO算法改进,进一步提高预测精度。该文针对PSO算法中认知因子和社会因子在全局搜索和局部搜索的不同作用,对非线性的学习因子做出异步调优改进,通过利用某路段的高速公路监测数据对改进的PSO-RBFNN算法进行训练,获得最优参数值,对短时交通流量进行预测,并将仿真结果与其他模型进行对比分析。实验结果表明,该文改进的PSO-RBFNN模型预测结果稳定,更适用于短时交通流量预测,具有更高的精度。
推荐文章
基于核学习方法的短时交通流量预测
核学习方法
短时交通流
预测
短时交通流预测方法研究
相关分析
支持向量机
交通流预测
智能交通
改进时间序列模型在高速公路短时交通流量预测中的应用
交通工程
交通流量预测
时间序列
样本序列
动态建模
参数调整
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进PSO优化RBFNN的短时交通流量预测方法
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 粒子群算法(PSO) 神经网络 径向基(RBF)神经网络 交通流量预测
年,卷(期) 2021,(5) 所属期刊栏目
研究方向 页码范围 226-228
页数 3页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2021(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群算法(PSO)
神经网络
径向基(RBF)神经网络
交通流量预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
论文1v1指导