基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Studying the complex quantum dynamics of interacting many-body systems is one of the most challeng-ing areas in modern physics.Here,we use machine learning (ML) models to identify the symmetrized base states of interacting Rydberg atoms of various atom numbers (up to six) and geometric con-figurations.To obtain the data set for training the ML classifiers,we generate Rydberg excitation probability profiles that simulate experimental data by utilizing Lindblad equations that incorporate laser intensities and phase noise.Then,we classify the data sets using support vector machines (SVMs)and random forest classifiers (RFCs).With these ML models,we achieve high accuracy of up to 100%for data sets containing only a few hundred samples,especially for the closed atom configurations such as the pentagonal (five atoms) and hexagonal (six atoms) systems.The results demonstrate that computationally cost-effective ML models can be used in the identification of Rydberg atom configurations.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
组建100Base-Tx若干问题的研讨
以太网
双绞线
RJ-45接头
RJ-45插座
基于情感计算的E-Learning模型框架
情感计算
E-Learning
和谐人机环境
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Machine learning identification of symmetrized base states of Rydberg atoms
来源期刊 物理学前沿 学科
关键词
年,卷(期) 2022,(1) 所属期刊栏目 Atomic, Molecular & Optical Physics
研究方向 页码范围 37-53
页数 17页 分类号
字数 语种 英文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2022(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
物理学前沿
双月刊
2095-0462
11-5994/O4
北京市朝阳区惠新东街4号富盛大厦15层
eng
出版文献量(篇)
1093
总下载数(次)
0
总被引数(次)
1881
论文1v1指导