原文服务方: 航空计算技术       
摘要:
辨识终端空域交通复杂度对空中交通管理的安全和效率起着关键作用。利用交通态势的瞬时图像,基于深度学习研究终端空域交通复杂度的辨识方法。构建交通态势图像,并通过对复杂性指标进行聚类实现数据标记。提出了基于卷积神经网络分类的交通复杂度辨识方法。以广州终端空域的进离场运行为研究案例实施验证。结果表明,一方面,包括飞机经度、纬度、高度和速度信息在内的图像可以充分代表空中交通的复杂性;另一方面,所提出的模型可以有效识别终端空域空中交通复杂性。
推荐文章
基于空域复杂度的扇区动态通行能力研究
复杂度
通行能力
危险天气
TAAM
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于卷积神经网络的交通声音事件识别方法
Gammatone滤波器
卷积神经网络
音频事件识别
公路交通环境
声音数字信号
子带滤波
一种终端区空中交通复杂度的计算方法
终端区
空中交通复杂度
静态
动态
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的终端空域交通复杂度辨识
来源期刊 航空计算技术 学科
关键词 空中交通管理 交通复杂度 卷积神经网络 终端空域 分类
年,卷(期) 2023,(2) 所属期刊栏目
研究方向 页码范围 54-58
页数 5页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2023(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
空中交通管理
交通复杂度
卷积神经网络
终端空域
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
航空计算技术
双月刊
1671-654X
61-1276/TP
大16开
西安市太白北路156号
1971-01-01
中文
出版文献量(篇)
3986
总下载数(次)
0
总被引数(次)
18592
论文1v1指导