基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
椭球径向基函数神经网络(EBF)是在径向基函数(RBF)映射理论基础上的改进.在保留RBF 3层网络结构基础上,EBF采用了最大期望算法来估计特征空间的混合密度分布参数,用椭球体集合来分解混合密度分布,从而构造了神经网络的中间层基函数的状态.由于遥感数据在特征空间中通常表现为混合密度分布,EBF模型能够充分利用期望最大(EM)算法获得的最大似然参数估计得到更合理的特征空间的密度分解模型,从而使得EBF模型能够保留RBF非线性复杂映射能力的同时,获得更合理的分类结果.为此提出了基于EBF的遥感分类方法,试验结果表明EBF方法比RBF方法网络连接更简单、分类精度更高.
推荐文章
基于GA-EM算法的GMM遥感影像变化检测方法
高斯混合模型
GA-EM
自适应参数估计
变化检测
基于改进决策树分类算法的遥感影像分类研究
决策树
分形
纹理特征
毯覆盖模型
遥感影像分类
AGA-BP模型在遥感影像分类中的应用研究
遥感
影像分类
BP神经网络
自适应遗传算法
基于GF-2遥感影像的面向对象分类方法比较研究
GF-2遥感影像
K-最近邻分类
支持向量机分类
CART决策树分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EM-EBF模型的遥感影像分类方法研究
来源期刊 中国图象图形学报 学科 工学
关键词 人工神经网络 遥感影像分类 椭球径向基函数 EM算法 混合密度
年,卷(期) 2005,(6) 所属期刊栏目 学术论文与技术报告
研究方向 页码范围 698-704
页数 8页 分类号 TP391
字数 5926字 语种 中文
DOI 10.3969/j.issn.1006-8961.2005.06.003
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (9)
同被引文献  (13)
二级引证文献  (8)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(4)
  • 参考文献(4)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(1)
  • 引证文献(1)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人工神经网络
遥感影像分类
椭球径向基函数
EM算法
混合密度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导