基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
机组组合优化问题是一个大规模、多约束、非线性的混合整数规划问题,因此求解非常困难.粒子群优化(PSO)算法是一类随机全局优化技术,它通过粒子间的相互作用发现复杂搜索空间中的最优区域.采用二进制粒子群优化方法解决机组状态组合问题,用遗传算法结合启发式技术解决经济分配问题,并对最小开停机时间及启停费用进行了处理,使得运算速度大大加快.方法的可行性在10台机组系统中检验.模拟结果表明文章所提出的算法具有收敛速度快及解的质量高等优点.
推荐文章
基于改进PSO算法在含风电场的电力系统无功优化控制
改进粒子群优化算法
风电场
无功优化
LINGO在电力系统机组组合优化中的应用
机组组合
混合整数优化
LINGO
发电成本
电力系统
基于改进免疫遗传算法的电力系统无功优化
遗传算法
免疫算法
免疫遗传算法
无功优化
基于改进遗传算法的含风电场电力系统无功优化
电力系统
无功优化
网损期望
风电机组
场景分析
改进遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进PSO算法的电力系统机组优化组合
来源期刊 三峡大学学报(自然科学版) 学科 工学
关键词 机组组合 电力系统 离散粒子群优化算法 遗传算法
年,卷(期) 2005,(6) 所属期刊栏目 水电论坛
研究方向 页码范围 504-508
页数 5页 分类号 TM711
字数 4421字 语种 中文
DOI 10.3969/j.issn.1672-948X.2005.06.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋秀洁 三峡大学电气信息学院 13 138 7.0 11.0
2 乐良才 三峡大学电气信息学院 1 18 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (6)
参考文献  (7)
节点文献
引证文献  (18)
同被引文献  (9)
二级引证文献  (5)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2007(4)
  • 引证文献(4)
  • 二级引证文献(0)
2008(5)
  • 引证文献(4)
  • 二级引证文献(1)
2009(3)
  • 引证文献(3)
  • 二级引证文献(0)
2010(1)
  • 引证文献(0)
  • 二级引证文献(1)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
机组组合
电力系统
离散粒子群优化算法
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
三峡大学学报(自然科学版)
双月刊
1672-948X
42-1735/TV
大16开
湖北省宜昌市大学路8号
1979
chi
出版文献量(篇)
3272
总下载数(次)
3
总被引数(次)
16186
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导