基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在介绍和比较标准支持向量机(SVM)和最小二乘支持向量机(LS-SVM)原理的基础上,提出了一种利用LS-SVM模型进行传感器动态系统辨识的方法,并给出了相应的过程和算法.与标准SVM模型比较,该方法优点是明显的:(1)用等式约束代替标准SVM算法中的不等式约束;(2)将求解二次规划问题转化为直接求解线性矩阵方程,使得在相同条件下,系统辨识速度提高1~2个数量级,辨识误差降低50%.因此,LS-SVM模型速度快,抗噪声干扰能力强,更适合传感器动态系统建模.
推荐文章
基于最小二乘支持向量机的T-S模型在线辨识
T-S模型
时间窗
势能
最小二乘支持向量机
基于最小二乘支持向量机逆系统方法应用研究
最小二乘支持向量机
逆系统方法
流浆箱
MATLAB
解耦控制
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
基于最小二乘支持向量机的双模控制
预测控制
最小二乘支持向量机
稳定性
李亚普诺夫方法
双模控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的传感器动态系统辨识方法
来源期刊 电子测量与仪器学报 学科 工学
关键词 支持向量机 最小二乘支持向量机 传感器 系统辨识
年,卷(期) 2006,(6) 所属期刊栏目
研究方向 页码范围 36-40
页数 5页 分类号 TP212
字数 3840字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴德会 九江学院电子工程系 66 721 15.0 23.0
5 杨世元 合肥工业大学仪器仪表学院 53 456 11.0 18.0
6 董华 合肥工业大学仪器仪表学院 10 104 5.0 10.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (33)
参考文献  (4)
节点文献
引证文献  (7)
同被引文献  (22)
二级引证文献  (30)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(3)
  • 引证文献(2)
  • 二级引证文献(1)
2010(4)
  • 引证文献(1)
  • 二级引证文献(3)
2011(6)
  • 引证文献(0)
  • 二级引证文献(6)
2012(5)
  • 引证文献(1)
  • 二级引证文献(4)
2013(3)
  • 引证文献(0)
  • 二级引证文献(3)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(3)
  • 引证文献(1)
  • 二级引证文献(2)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
支持向量机
最小二乘支持向量机
传感器
系统辨识
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
总被引数(次)
44770
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导