基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Margin在机器学习中具有很重要的意义,基于margin的特征选择方法就是从分类的角度对特征集各特征的权重进行分析.该文对不同的margin进行了分析,提出将sample-margin和hypothesis-margin分别作为特征选择标准对SBS特征选择方法进行改进,然后设计具有最佳超参数的SVM多项式分类器进行人脸识别.实验在FRERT人脸图像库上进行并与Relief特征选择方法进行了比较,对SVM和NN分类器的实验结果也进行了分析.实验结果显示:该文提出的人脸识别特征选择及识别方法是有效、适用的.
推荐文章
基于视频监控的人脸识别方法
人脸识别
监控视频
人脸序列
协同识别
基于LLE算法的人脸识别方法
子空间分析
局部线性嵌入
非线性降维
人脸识别
基于频谱的人脸识别方法
人脸识别
本征脸
LDA
频谱脸
基于PCA的人脸识别方法的比较研究
PCA
人脸识别
2DPCA
PCA+2DPCA
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于不同Margin的人脸特征选择及识别方法
来源期刊 电子与信息学报 学科 工学
关键词 人脸识别 Margin 特征选择 支持向量机(SVM) 顺序后退法(SBS)
年,卷(期) 2007,(7) 所属期刊栏目 论文
研究方向 页码范围 1744-1748
页数 5页 分类号 TP391.41
字数 4285字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈伟民 重庆大学光电技术及系统教育部重点实验室 311 4748 37.0 51.0
2 龚卫国 重庆大学光电技术及系统教育部重点实验室 74 990 19.0 27.0
3 李伟红 重庆大学光电技术及系统教育部重点实验室 41 585 16.0 23.0
4 杨利平 重庆大学光电技术及系统教育部重点实验室 24 311 10.0 17.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (6)
同被引文献  (9)
二级引证文献  (5)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸识别
Margin
特征选择
支持向量机(SVM)
顺序后退法(SBS)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子与信息学报
月刊
1009-5896
11-4494/TN
大16开
北京市北四环西路19号
2-179
1979
chi
出版文献量(篇)
9870
总下载数(次)
11
总被引数(次)
95911
相关基金
教育部科学技术研究项目
英文译名:Key Project of Chinese Ministry of Education
官方网址:http://www.dost.moe.edu.cn
项目类型:教育部科学技术研究重点项目
学科类型:
重庆市自然科学基金
英文译名:
官方网址:http://law.ddvip.com/law/2006-09/11584979384040.html
项目类型:重点项目
学科类型:
论文1v1指导