基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种机器人逆运动学问题建模的新方法.利用神经网络逼近机器人逆运动学的输入与输出、利用改进的蚁群算法学习神经网络.针对蚁群算法主要用于离散优化的特点,对基本的蚁群算法进行了改进,采用了全局搜索、局部搜索和确定性搜索,为连续问题的优化提供了一条新的思路.利用改进的蚁群算法学习神经网络,为神经网络提供了一种新的学习算法,使得该方法兼具了蚁群算法与神经网络的优点.应用实例表明了该方法的有效性,提高了机器人逆运动学求解的速度和精度.
推荐文章
基于神经网络的机器人的逆运动学分析
BP神经网络
六自由度
机器人
逆运动学
基于蚁群算法的多机器人协作策略
多机器人
协作
蚁群算法
任务死锁
基于改进蚁群算法的机器人路径规划算法
移动机器人
改进蚁群算法
路径规划
基于蚁群算法的自由飞行空间机器人路径规划
自由飞行空间机器人
蚁群算法
路径规划
障碍避碰
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于蚁群神经网络算法的机器人逆解
来源期刊 山东大学学报(工学版) 学科 工学
关键词 蚁群算法 神经网络 逆运动学
年,卷(期) 2008,(5) 所属期刊栏目
研究方向 页码范围 72-76
页数 5页 分类号 TP183
字数 4772字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王勇 山东大学机械工程学院 211 1565 17.0 27.0
2 梅红 山东大学机械工程学院 4 73 4.0 4.0
3 赵荣齐 山东大学机械工程学院 3 38 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (153)
参考文献  (4)
节点文献
引证文献  (8)
同被引文献  (7)
二级引证文献  (2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(8)
  • 参考文献(0)
  • 二级参考文献(8)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
蚁群算法
神经网络
逆运动学
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
山东省自然科学基金
英文译名:Natural Science Foundation of Shandong Province
官方网址:http://kyc.wfu.edu.cn/second/wnfw/shandongshengzirankexuejijin.htm
项目类型:重点项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导