基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
将最小二乘支持向量机引入到半监督学习中,提出了一种最小二乘支持向量机的半监督学习算法.采用最小二乘支持向最机训练混合样本集,利用最小二乘支持向量机训练速度快、效率高等优点有效地克服了目前一些半监督支持向量机学习算法时间代价大、效率低的缺陷.在训练过程中采用区域标注法,减少达到收敛所需要的迭代次数,并给出了SLS-SVM算法具体的数学描述.在人造数据集及实际数据集上的实验表明,最小二乘支持向量机的半监督学习算法可以有效的减少训练时问,提高训练的速度,从而具有更好的推广能力.
推荐文章
最小二乘支持向量机交通事件检测算法
交通工程
事件检测
最小二乘支持向量机
分类
最小二乘支持向量机的参数优化算法研究
最小二乘支持向量机
参数优化
水下焊接
熔深预测
基于最小二乘支持向量机的多属性决策
多属性决策
最小二乘支持向量机
效用函数
稀疏最小二乘支持向量机及其应用研究
最小二乘支持向量机
核偏最小二乘辨识
智能建模
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 最小二乘支持向量机的半监督学习算法
来源期刊 哈尔滨工程大学学报 学科 工学
关键词 半监督学习 支持向量机 统计学习理论 最小二乘法
年,卷(期) 2008,(10) 所属期刊栏目
研究方向 页码范围 1088-1092
页数 5页 分类号 TP301.5
字数 4342字 语种 中文
DOI 10.3969/j.issn.1006-7043.2008.10.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张健沛 哈尔滨工程大学计算机科学与技术学院 156 1356 19.0 28.0
2 杨静 哈尔滨工程大学计算机科学与技术学院 178 2073 24.0 37.0
3 赵莹 哈尔滨工程大学计算机科学与技术学院 22 194 7.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (100)
参考文献  (3)
节点文献
引证文献  (13)
同被引文献  (23)
二级引证文献  (13)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(5)
  • 参考文献(1)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(1)
  • 二级引证文献(1)
2011(1)
  • 引证文献(0)
  • 二级引证文献(1)
2012(5)
  • 引证文献(5)
  • 二级引证文献(0)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(3)
  • 引证文献(1)
  • 二级引证文献(2)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(0)
  • 二级引证文献(2)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
半监督学习
支持向量机
统计学习理论
最小二乘法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
哈尔滨工程大学学报
月刊
1006-7043
23-1390/U
大16开
哈尔滨市南岗区南通大街145号1号楼
14-111
1980
chi
出版文献量(篇)
5623
总下载数(次)
16
总被引数(次)
45433
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
黑龙江省自然科学基金
英文译名:
官方网址:http://jj.dragon.cn/zr/index.asp
项目类型:
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导