作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文以灰度值的图像分割为基础,对模糊C均值聚类算法(Fuzzy C-means,FCM)[1]和硬聚类进行了详尽的讨论,在此基础上对两者进行了比较,包括两者的迭代速度比较和两者的分割效果比较,聚类中心的初始化对迭代速度和分割效果的影响,并以此为基础对FCM聚类算法进行了改进。实验表明,改进的FCM聚类算法在迭代速度和分割效果方面都明显优于原始的FCM聚类算法。
推荐文章
改进的粒子群优化模糊C均值聚类算法
模糊C均值聚类
粒子群优化
聚类有效性
基于改进QPSO的模糊C-均值聚类算法
模糊C-均值聚类
量子粒子群优化
聚类分析
量子门更新策略
基于改进模糊均值聚类算法的遥感图像聚类
模糊均值
点密度函数
遥感图像
聚类
有效性指数
优化的核模糊C均值聚类算法
模糊C均值聚类
核函数
蝙蝠算法
佳点集
速度权重
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 模糊C均值聚类与硬聚类的性能比较及改进
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 模糊C均值聚类 硬聚类 图像分割
年,卷(期) 2008,(S2) 所属期刊栏目
研究方向 页码范围 192-194
页数 3页 分类号 TP391.41
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨建 北京航空航天大学附属中学 13 74 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊C均值聚类
硬聚类
图像分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导