基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用视频采集方式和神经网络方法实现了驾驶员疲劳驾驶的非接触式监测.应用车头前端和车厢内部双路视频摄像头分别采集车辆相对于车道线的行驶轨迹和驾驶员的睁闭眼状态,应用Radon变换提取5 s内车头与车道线间的最大和最小偏离、相邻2帧间车头与车道线的最大角度变化量和平均角度差,应用AdaBoost算法提取驾驶员眼睛闭合帧数比例,并将上述各参数作为RBF神经网络的输入来实现驾驶员疲劳状态的动态监测,实验数据表明监测效果良好.
推荐文章
基于D-S理论和模糊神经网络的疲劳驾驶监测
疲劳驾驶
D-S证据理论
模糊神经网络
一种基于卷积神经网络的疲劳驾驶检测方法
疲劳驾驶检测
人脸检测
人脸特征点
卷积神经网络
基于人机互动的疲劳驾驶监测预警系统设计
疲劳驾驶预警
人机互动
监测报警
GSM通信
驾驶行为报告
疲劳驾驶监测的研究进展
疲劳驾驶
疲劳监测
信息融合
发展趋势
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于视频图像和RBF神经网络的疲劳驾驶监测系统
来源期刊 道路交通与安全 学科
关键词 疲劳驾驶监测 视频图像 径向基函数神经网络 Radon变换 AdaBoost算法
年,卷(期) 2009,(4) 所属期刊栏目 技术与方法
研究方向 页码范围 30-33
页数 4页 分类号
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (28)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
疲劳驾驶监测
视频图像
径向基函数神经网络
Radon变换
AdaBoost算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通工程
双月刊
2096-3432
10-1468/U
大16开
北京市丰台区南四环西路186号汉威国际四区3号楼6M层
2000
eng
出版文献量(篇)
1342
总下载数(次)
5
总被引数(次)
5375
论文1v1指导