基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对BP神经网络收敛速度慢、易陷入局部极小的缺点,提出将改进的人工鱼群算法与BP算法相结合的混合算法训练人工神经网络,建立了相应的优化训练模型及训练过程.通过基于生物免疫机制改进的人工鱼群算法优化训练多层前向神经网络,使神经网络对训练初值和参数要求不高,扩大了权值的搜索空间,提高了收敛速度和学习精度,有效地协调全局和局部搜索能力.仿真结果表明,该算法性能优于其它算法,具有均方误差值小,收敛速度快和计算精度高等特点,是一种更有效的神经网络训练算法.
推荐文章
基于模拟退火算法改进的 BP神经网络算法
BP神经网络
样本选择
主动学习
模拟退火
基于改进AFSA-BP算法的油水界面软测量
油水界面
人工鱼群算法
BP神经网络
软测量
基于狼群算法优化的BP神经网络
BP神经网络
狼群算法
函数拟合
基于改进BP神经网络的预测模型及其应用
神经网络
BP算法
L-M算法
非线性系统
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进AFSA算法的BP神经网络的研究
来源期刊 计算机工程与设计 学科 工学
关键词 改进人工鱼群算法 BP神经网络 免疫算子 组合优化 随机搜索
年,卷(期) 2009,(20) 所属期刊栏目 人工智能
研究方向 页码范围 4719-4721,4765
页数 4页 分类号 TP183
字数 5015字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (706)
参考文献  (4)
节点文献
引证文献  (5)
同被引文献  (24)
二级引证文献  (40)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(3)
  • 引证文献(0)
  • 二级引证文献(3)
2016(11)
  • 引证文献(1)
  • 二级引证文献(10)
2017(9)
  • 引证文献(0)
  • 二级引证文献(9)
2018(10)
  • 引证文献(0)
  • 二级引证文献(10)
2019(7)
  • 引证文献(2)
  • 二级引证文献(5)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
改进人工鱼群算法
BP神经网络
免疫算子
组合优化
随机搜索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
相关基金
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导