基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于特征融合的人脸识别方法.该方法首先对预处理后的人脸图像进行全局特征及局部分量的提取,分别采用离散余弦交换(DCT)提取包含图像大量信息的低频部分特征和奇异值分解(SVD)抽取图像的代数特征作为图像的全局特征,采用非负矩阵分解(NMF)提取图像的局部分量特征,然后将此两类特征以独立成份分析(ICA)进行融合,获取用于人脸识别的特征向量.在本文的实验中,我们将此特征向量应用于支持向量机(SVM)进行分类训练及识别测试,并获得较好的结果.
推荐文章
基于多特征融合CNN的人脸识别算法研究
人脸识别
卷积神经网络(CNN)
多特征融合
leakyrelu激活函数
人脸数据集
基于多特征融合的人脸表情识别
表情识别
均值主元分析
线性判别
支持向量机
基于ICA和FLD相结合的人脸识别
主成分分析
独立成分分析
Fisher线性辨别分析
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ICA多特征融合的人脸识别
来源期刊 应用基础与工程科学学报 学科 工学
关键词 离散余弦变换 奇异值分解 非负矩阵分解 独立成份分析 融合 人脸识别文献标识吗 A
年,卷(期) 2009,(5) 所属期刊栏目
研究方向 页码范围 799-809
页数 11页 分类号 TP391
字数 1723字 语种 中文
DOI 10.3969/j.issn.1005-0930.2009.05.019
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 魏小鹏 大连大学辽宁省智能信息处理重点实验室 103 1445 18.0 34.0
2 张强 大连大学辽宁省智能信息处理重点实验室 47 298 10.0 15.0
3 周昌军 大连大学辽宁省智能信息处理重点实验室 6 6 1.0 1.0
4 白春光 大连理工大学管理学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (137)
参考文献  (13)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1974(2)
  • 参考文献(1)
  • 二级参考文献(1)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(5)
  • 参考文献(3)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(6)
  • 参考文献(0)
  • 二级参考文献(6)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(8)
  • 参考文献(3)
  • 二级参考文献(5)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
离散余弦变换
奇异值分解
非负矩阵分解
独立成份分析
融合
人脸识别文献标识吗
A
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用基础与工程科学学报
双月刊
1005-0930
11-3242/TB
16开
北京大学老地学楼110室
1993
chi
出版文献量(篇)
2121
总下载数(次)
3
总被引数(次)
21474
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导