基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
通过对景象匹配过程的分析,从模式识别的角度阐述了误匹配产生的原因.从避免误匹配的角度定义了双近邻度、最小距离以反映sAR景象的独特性和匹配的准确性,并结合反映地面景物稳定性的边缘密度,构建反映SAR景象适配性的分类特征向量.基于该分类特征向量,利用最小二乘支持向量机将SAR景象基准图子图划分为匹配正确的子图和匹配错误的子图,并由匹配正确的子图类构成sAR景象适配区.试验结果表明,提出的方法能够有效地规划出所需的SAR景象匹配区.
推荐文章
基于MapReduce的最小二乘支持向量机回归模型
最小二乘支持向量机
MapReduce编程模式
局部多模型方法
加速比
可扩展性
基于最小二乘支持向量机的多属性决策
多属性决策
最小二乘支持向量机
效用函数
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
基于最小二乘支持向量机的双模控制
预测控制
最小二乘支持向量机
稳定性
李亚普诺夫方法
双模控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于双近邻模式和最小二乘支持向量机的SAR景象匹配区选择
来源期刊 宇航学报 学科 工学
关键词 匹配区选择 双近邻模式 最小二乘支持向量机 SAR 景象匹配
年,卷(期) 2009,(4) 所属期刊栏目 电子信息
研究方向 页码范围 1626-1632
页数 7页 分类号 TP391.4
字数 5150字 语种 中文
DOI 10.3873/j.issn.1000-1328.2009.04.053
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 田金文 华中科技大学图像识别与人工智能研究所多谱信息处理技术国家重点试验室 248 2531 25.0 36.0
2 程华 华中科技大学图像识别与人工智能研究所多谱信息处理技术国家重点试验室 14 216 9.0 14.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (26)
参考文献  (10)
节点文献
引证文献  (10)
同被引文献  (23)
二级引证文献  (10)
1976(1)
  • 参考文献(1)
  • 二级参考文献(0)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(3)
  • 引证文献(2)
  • 二级引证文献(1)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(7)
  • 引证文献(3)
  • 二级引证文献(4)
研究主题发展历程
节点文献
匹配区选择
双近邻模式
最小二乘支持向量机
SAR
景象匹配
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
宇航学报
月刊
1000-1328
11-2053/V
16开
北京838信箱
2-167
1980
chi
出版文献量(篇)
5133
总下载数(次)
7
总被引数(次)
58725
相关基金
武器装备预研基金
英文译名:
官方网址:
项目类型:武器装备预研基金重点基金项目和武器装备预研基金一般基金项目
学科类型:
论文1v1指导