基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
决策表离散化要求决策表中原有的分类结果不变,而NaiveScaler算法在离散化时,有些根据不可分辨关系应该得到的断点很可能被丢掉,造成决策表信息的丢失.针对这一问题,对其进行了研究并改进.原算法在扫描相同条件属性值而决策值不同的对象时,由于这些对象的排序不同可能造成离散的结果不同.主要是在这里某些断点可能被遗漏,并引进新的冲突.为此,当条件属性值变化时查看其决策属性值,若有不同决策属性值则追加断点以消除断点被丢掉的可能.进而使得到的初始断点集更可靠.最后给出实例表明该算法有效.
推荐文章
Naive Scaler数值属性离散化算法的分析与改进
数值属性
离散化
粗糙集
NaiveScaler算法
应用MTV412M实现LCD控制器AMI-scaler的显示控制
LCD控制器
微处理器
12C接口
DDC
EDID
基于K-means和naive Bayes的数据库用户行为异常检测研究
数据库
用户行为
异常检测
K-means聚类
naiveBayes分类算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 针对Naive Scaler的改进
来源期刊 计算机工程与设计 学科 工学
关键词 粗糙集 离散化 决策表 不可分辨关系 Naive Scaler
年,卷(期) 2009,(13) 所属期刊栏目 人工智能
研究方向 页码范围 3148-3150,3253
页数 4页 分类号 TP311.13
字数 4731字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 鄂旭 辽宁工业大学电子与信息工程学院 16 88 6.0 9.0
2 范力进 辽宁工业大学电子与信息工程学院 2 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (51)
参考文献  (5)
节点文献
引证文献  (4)
同被引文献  (4)
二级引证文献  (29)
1982(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(4)
  • 引证文献(0)
  • 二级引证文献(4)
2015(10)
  • 引证文献(1)
  • 二级引证文献(9)
2016(5)
  • 引证文献(0)
  • 二级引证文献(5)
2017(6)
  • 引证文献(0)
  • 二级引证文献(6)
2018(3)
  • 引证文献(1)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粗糙集
离散化
决策表
不可分辨关系
Naive Scaler
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与设计
月刊
1000-7024
11-1775/TP
大16开
北京142信箱37分箱
82-425
1980
chi
出版文献量(篇)
18818
总下载数(次)
45
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导