基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Parepinelli等人提出了基于ACO的分类算法。算法实质上是一种序列覆盖算法:蚁群搜索一个规则,移去它覆盖的样例,再重复这一过程.从而得到共同覆盖样例的一组规则。针对蚁群算法计算时间长的缺点,文章采用了新的启发函数及信息素更斯方法,并引入了精英群交叉变异策略。对两个功用数据的实验及其和Ant—Miner的对比表明,该算法有更强的预测分析能力,能够发现更好的分类规则集?以及形式更简单的规则。实验同时显示该算法有效节约了时间。
推荐文章
一种基于关联规则挖掘的分类规则挖掘算法
数据挖掘
关联规则
分类规则
一种基于AFSA与RST分类规则挖掘算法
人工鱼群算法
离散化
粗糙集理论
分类规则挖掘
一种基于泛化的在线分类规则挖掘算法
在线分类
概念层次
决策树
基于蚁群算法的分类规则挖掘算法
蚁群算法
分类规则
变异算子
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于变异蚁群算法的分类规则挖掘算法
来源期刊 电脑知识与技术:学术交流 学科 工学
关键词 蚁群算法 分类规则 精英群交叉变异策略 决策树学习
年,卷(期) 2009,(4) 所属期刊栏目
研究方向 页码范围 2541-2543
页数 3页 分类号 TP391
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王运林 上海海事大学信息工程学院 2 3 1.0 1.0
2 王晓蜂 上海海事大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
蚁群算法
分类规则
精英群交叉变异策略
决策树学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导