基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Zernike不变矩具有对噪声不敏感,正交等特性,是表情的有效表征方法,高阶Zernike矩包含更多图像信息,对表情分类的作用更大.但是高阶矩的计算复杂度很大,很难达到快速表情识别的要求.本文利用小波变换对表情图像进行多尺度分析,从低频子图像中计算其Zernike矩作为判别特征进行表情识别.通过小波变换,一方面可以对图像降维,降低计算复杂度;另一方面,小波变换的去噪性能使得识别效果更好.实验表明,基于多尺度分析Zernike矩特征的方法优于单独使用小波变换或Zernike矩特征方法的识别效果.
推荐文章
基于多特征融合的人脸表情识别
表情识别
均值主元分析
线性判别
支持向量机
基于多特征集成分类器的人脸表情识别
人脸表情识别
多特征
集成分类器
神经网络
基于多尺度融合注意力机制的人脸表情识别研究
计算机视觉
深度学习
人脸表情识别
特征提取
多尺度特征融合
注意力机制
基于多尺度分析的人脸识别算法研究
人脸识别
多尺度分析
轮廓特征
角点特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度分析矩特征的人脸表情识别
来源期刊 信号处理 学科 工学
关键词 Zernike矩 矩不变量 小波变换 表情识别
年,卷(期) 2009,(5) 所属期刊栏目 论文与技术报告
研究方向 页码范围 692-696
页数 5页 分类号 TP391.41
字数 4791字 语种 中文
DOI 10.3969/j.issn.1003-0530.2009.05.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阮秋琦 北京交通大学信息科学研究所 105 1445 20.0 32.0
2 支瑞聪 北京交通大学信息科学研究所 2 8 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (8)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (7)
二级引证文献  (5)
1962(2)
  • 参考文献(1)
  • 二级参考文献(1)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
Zernike矩
矩不变量
小波变换
表情识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号处理
月刊
1003-0530
11-2406/TN
大16开
北京鼓楼西大街41号
18-143
1985
chi
出版文献量(篇)
5053
总下载数(次)
13
总被引数(次)
32728
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导